Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: Road cycling is a sport with extreme physiological demands. Therefore, there is a need to find new strategies to improve performance. Heart-rate variability (HRV) has been suggested as an effective alternative for prescribing training load against predefined training programs. The purpose of this study was to examine the effect of training prescription based on HRV in road cycling performance. Methods: Seventeen well-trained cyclists participated in this study. After an initial evaluation week, cyclists performed 4 baseline weeks of standardized training to establish their resting HRV. Then, cyclists were divided into 2 groups, an HRV-guided group and a traditional periodization group, and they carried out 8 training weeks. Cyclists performed 2 evaluation weeks, after and before a training week. During the evaluation weeks, cyclists performed a graded exercise test to assess maximal oxygen uptake, peak power output, and ventilatory thresholds with their corresponding power output (VT1, VT2, WVT1, and WVT2, respectively) and a 40-min simulated time trial. Results: The HRV-guided group improved peak power output (5.1% [4.5%]; P = .024), WVT2 (13.9% [8.8%]; P = .004), and 40-min all-out time trial (7.3% [4.5%]; P = .005). Maximal oxygen uptake and WVT1 remained similar. The traditional periodization group did not improve significantly after the training week. There were no differences between groups. However, magnitude-based inference analysis showed likely beneficial and possibly beneficial effects for the HRV-guided group instead of the traditional periodization group in 40-min all-out time trial and peak power output, respectively. Conclusion: Daily training prescription based on HRV could result in a better performance enhancement than a traditional periodization in well-trained cyclists.

Javaloyes, Sarabia, and Moya-Ramon are with the Sports Research Center, Miguel Hernández University of Elche, Alicante, Spain. Lamberts is with the Inst of Sport and Exercise Medicine, Stellenbosch University, Tygerberg, South Africa.

Moya-Ramon (mmoya@umh.es) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Lucia AHoyos JSantalla AEarnest CChicharro JL. Tour de France versus Vuelta a Espana: which is harder? Med Sci Sports Exerc. 2003;35(5):872878. PubMed ID: 12750600 doi:10.1249/01.MSS.0000064999.82036.B4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Lucia AHoyos JChicharro JL. Physiology of professional road cycling. Sports Med. 2001;31(5):325337. PubMed ID: 11347684 doi:10.2165/00007256-200131050-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Vogt SSchumacher YRoecker Ket al. Power output during the Tour de France. Int J Sports Med. 2007;28(9):756761. PubMed ID: 17497569 doi:10.1055/s-2007-964982

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Plews DJLaursen PBStanley JKilding AEBuchheit M. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013;43(9):773781. PubMed ID: 23852425 doi:10.1007/s40279-013-0071-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Vesterinen VNummela AHeikura Iet al. Individual endurance training prescription with heart rate variability. Med Sci Sports Exerc. 2016;48(7):13471354. PubMed ID: 26909534 doi:10.1249/MSS.0000000000000910

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Vesterinen VHäkkinen KHynynen EMikkola JHokka LNummela A. Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance runners. Scand J Med Sci Sports. 2013;23(2):171180. PubMed ID: 21812828 doi:10.1111/j.1600-0838.2011.01365.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(suppl 2):139147. PubMed ID: 25200666 doi:10.1007/s40279-014-0253-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Bellenger CRFuller JTThomson RLDavison KRobertson EYBuckley JD. Monitoring athletic training status through autonomic heart rate regulation: a systematic review and meta-analysis. Sports Med. 2016;46(10):14611486. PubMed ID: 26888648 doi:10.1007/s40279-016-0484-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Lamberts RPSwart JNoakes TDLambert MI. Changes in heart rate recovery after high-intensity training in well-trained cyclists. Eur J Appl Physiol. 2009;105(5):705713. PubMed ID: 19101720 doi:10.1007/s00421-008-0952-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lamberts RP. The Development of an Evidenced-Based Submaximal Cycle Test Designed to Monitor and Predict Cycling Performance: The Lamberts and Lambert Submaximal Cycle Test (LSCT). University of Cape Town; 2009.

    • Search Google Scholar
    • Export Citation
  • 11.

    Decroix LLamberts RPMeeusen R. Can the lamberts and lambert submaximal cycle test reflect overreaching in professional cyclists? Int J Sports Physiol Perform. 2018;13(1):2328. PubMed ID: 28422523 doi:10.1123/ijspp.2016-0685

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Lamberts RPRietjens GJTijdink HHNoakes TDLambert MI. Measuring submaximal performance parameters to monitor fatigue and predict cycling performance: a case study of a world-class cyclo-cross cyclist. Eur J Appl Physiol. 2010;108(1):183190. PubMed ID: 19921241 doi:10.1007/s00421-009-1291-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European society of cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):10431065. PubMed ID: 8598068 doi:10.1161/01.CIR.93.5.1043

    • Search Google Scholar
    • Export Citation
  • 14.

    Plews DJLaursen PBBuchheit M. Day-to-day heart rate variability recordings in World-Champion rowers: appreciating unique athlete characteristics. Int J Sports Physiol Perform. 2017;12(5):697703. PubMed ID: 27736257 doi:10.1123/ijspp.2016-0343

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Plews DJLaursen PBKilding AEBuchheit M. Heart-rate variability and training-intensity distribution in elite rowers. Int J Sports Physiol Perform. 2014;9(6):10261032. PubMed ID: 24700160 doi:10.1123/ijspp.2013-0497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Plews DJLaursen PBKilding AEBuchheit M. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur J Appl Physiol. 2012;112(11):37293741. PubMed ID: 22367011 doi:10.1007/s00421-012-2354-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Earnest CPJurca RChurch TSChicharro JHoyos JLucia A. Relation between physical exertion and heart rate variability characteristics in professional cyclists during the Tour of Spain. Br J Sports Med. 2004;38(5):568575. PubMed ID: 15388541 doi:10.1136/bjsm.2003.005140

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pichot VRoche FGaspoz JMet al. Relation between heart rate variability and training load in middle-distance runners. Med Sci Sports Exerc. 2000;32(10):17291736. PubMed ID: 11039645 doi:10.1097/00005768-200010000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kiviniemi AMHautala AJKinnunen HTulppo MP. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol. 2007;101(6):743751. PubMed ID: 17849143 doi:10.1007/s00421-007-0552-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Botek MMcKune AJKrejci JStejskal PGaba A. Change in performance in response to training load adjustment based on autonomic activity. Int J Sports Med. 2014;35(6):482488. PubMed ID: 24129989 doi:10.1055/s-0033-1354385

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Schmitt LWillis SJFardel ACoulmy NMillet GP. Live high-train low guided by daily heart rate variability in elite Nordic-skiers. Eur J Appl Physiol. 2018;118(2):419428. PubMed ID: 29247273 doi:10.1007/s00421-017-3784-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Pallares JGMoran-Navarro ROrtega JFFernandez-Elias VEMora-Rodriguez R. Validity and reliability of ventilatory and blood lactate thresholds in well-trained cyclists. PLoS ONE. 2016;11(9):0163389. PubMed ID: 27657502 doi:10.1371/journal.pone.0163389

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Zadow EKKitic CMWu SSSmith STFell JW. Validity of power settings of the Wahoo KICKR Power Trainer. Int J Sports Physiol Perform. 2016;11(8):11151117. PubMed ID: 26915606 doi:10.1123/ijspp.2015-0733

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Pettitt RWClark IEEbner SMSedgeman DTMurray SR. Gas exchange threshold and VO2max testing for athletes: an update. J Strength Cond Res. 2013;27(2):549555. PubMed ID: 22531615 doi:10.1519/JSC.0b013e31825770d7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Perrotta ASJeklin ATHives BAMeanwell LEWarburton DE. Validity of the elite HRV Smartphone application for examining heart rate variability in a field-based setting. J Strength Cond Res. 2017;31(8):22962302. PubMed ID: 28195974 doi:10.1519/JSC.0000000000001841

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Esco MRFlatt AA. Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: evaluating the agreement with accepted recommendations. J Sports Sci Med. 2014;13(3):535541. PubMed ID: 25177179

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Niskanen JPTarvainen MPRanta-Aho POKarjalainen PA. Software for advanced HRV analysis. Comput Methods Programs Biomed. 2004;76(1):7381. PubMed ID: 15313543 doi:10.1016/j.cmpb.2004.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Flatt AAEsco MR. Heart rate variability stabilization in athletes: towards more convenient data acquisition. Clin Physiol Funct Imaging. 2016;36(5):331336. PubMed ID: 25754514 doi:10.1111/cpf.12233

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Plews DJLaursen PBKilding AEBuchheit M. Evaluating training adaptation with heart-rate measures: a methodological comparison. Int J Sports Physiol Perform. 2013;8(6):688691. PubMed ID: 23479420 doi:10.1123/ijspp.8.6.688

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Hopkins WMarshall SBatterham AHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    da Silva DFFerraro ZMAdamo KBMachado FA. Endurance running training individually-guided by HRV in untrained women [published online ahead of print May 30 2017]. J Strength Cond Res. PubMed ID: 28570494 doi:10.1519/JSC.0000000000002001

    • Search Google Scholar
    • Export Citation
  • 32.

    Stöggl TLSperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol. 2015;6:295. PubMed ID: 26578968 doi:10.3389/fphys.2015.00295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Joyner MJCoyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):3544. PubMed ID: 17901124 doi:10.1113/jphysiol.2007.143834

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Nuuttila O-PNikander APolomoshnov DLaukkanen JAHäkkinen K. Effects of HRV-guided vs predetermined block training on performance, HRV and serum hormones. Int J Sports Med. 2017;38(12):909920. PubMed ID: 28950399 doi:10.1055/s-0043-115122

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Lundby CMontero DJoyner M. Biology of VO2max: looking under the physiology lamp. Acta Physiol. 2017;220(2):218228. PubMed ID: 27888580 doi:10.1111/apha.12827

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Pinot JGrappe F. A six-year monitoring case study of a top-10 cycling Grand Tour finisher. J Sports Sci. 2015;33(9):907914. PubMed ID: 25357188 doi:10.1080/02640414.2014.969296

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Swart JLamberts RPDerman WLambert MI. Effects of high-intensity training by heart rate or power in well-trained cyclists. J Strength Cond Res. 2009;23(2):619625. PubMed ID: 19204572 doi:10.1519/JSC.0b013e31818cc5f5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Fernández-García BPérez-landaluce JRodríguez-Alonso MTerrados N. Intensity of exercise during road race pro-cycling competition. Med Sci Sports Exerc. 2000;32(5):10021006. PubMed ID: 10795793 doi:10.1097/00005768-200005000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Padilla SMujika IOrbañanos JSantisteban JAngulo FGoiriena JJ. Exercise intensity and load during mass-start stage races in professional road cycling. Med Sci Sports Exerc. 2001;33(5):796802. PubMed ID: 11323551 doi:10.1097/00005768-200105000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Padilla SMujika ISantisteban JImpellizzeri FMGoiriena JJ. Exercise intensity and load during uphill cycling in professional 3-week races. Eur J Appl Physiol. 2008;102(4):431438. PubMed ID: 17978835 doi:10.1007/s00421-007-0602-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Hoff JGran AHelgerud J. Maximal strength training improves aerobic endurance performance. Scand J Med Sci Sports. 2002;12(5):288295. PubMed ID: 12383074 doi:10.1034/j.1600-0838.2002.01140.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Rønnestad BRMujika I. Optimizing strength training for running and cycling endurance performance: a review. Scand J Med Sci Sports. 2014;24(4):603612. PubMed ID: 23914932 doi:10.1111/sms.12104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Nakamura FYFlatt AAPereira LARamirez-Campillo RLoturco IEsco MR. Ultra-short-term heart rate variability is sensitive to training effects in team sports players. J Sports Sci Med. 2015;14(3):602605. PubMed ID: 26336347

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Flatt AAEsco MR. Validity of the ithleteTM smart phone application for determining ultra-short-term heart rate variability. J Hum Kinet. 2013;39(1):8592. PubMed ID: 24511344 doi:10.2478/hukin-2013-0071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 611 611 197
Full Text Views 18 18 5
PDF Downloads 19 19 6
Altmetric Badge
PubMed
Google Scholar