Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: Road cycling is a sport with extreme physiological demands. Therefore, there is a need to find new strategies to improve performance. Heart-rate variability (HRV) has been suggested as an effective alternative for prescribing training load against predefined training programs. The purpose of this study was to examine the effect of training prescription based on HRV in road cycling performance. Methods: Seventeen well-trained cyclists participated in this study. After an initial evaluation week, cyclists performed 4 baseline weeks of standardized training to establish their resting HRV. Then, cyclists were divided into 2 groups, an HRV-guided group and a traditional periodization group, and they carried out 8 training weeks. Cyclists performed 2 evaluation weeks, after and before a training week. During the evaluation weeks, cyclists performed a graded exercise test to assess maximal oxygen uptake, peak power output, and ventilatory thresholds with their corresponding power output (VT1, VT2, WVT1, and WVT2, respectively) and a 40-min simulated time trial. Results: The HRV-guided group improved peak power output (5.1% [4.5%]; P = .024), WVT2 (13.9% [8.8%]; P = .004), and 40-min all-out time trial (7.3% [4.5%]; P = .005). Maximal oxygen uptake and WVT1 remained similar. The traditional periodization group did not improve significantly after the training week. There were no differences between groups. However, magnitude-based inference analysis showed likely beneficial and possibly beneficial effects for the HRV-guided group instead of the traditional periodization group in 40-min all-out time trial and peak power output, respectively. Conclusion: Daily training prescription based on HRV could result in a better performance enhancement than a traditional periodization in well-trained cyclists.

Javaloyes, Sarabia, and Moya-Ramon are with the Sports Research Center, Miguel Hernández University of Elche, Alicante, Spain. Lamberts is with the Inst of Sport and Exercise Medicine, Stellenbosch University, Tygerberg, South Africa.

Moya-Ramon (mmoya@umh.es) is corresponding author.
  • 1.

    Lucia A, Hoyos J, Santalla A, Earnest C, Chicharro JL. Tour de France versus Vuelta a Espana: which is harder? Med Sci Sports Exerc. 2003;35(5):872–878. PubMed ID: 12750600 doi:10.1249/01.MSS.0000064999.82036.B4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Lucia A, Hoyos J, Chicharro JL. Physiology of professional road cycling. Sports Med. 2001;31(5):325–337. PubMed ID: 11347684 doi:10.2165/00007256-200131050-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Vogt S, Schumacher Y, Roecker K, et al. Power output during the Tour de France. Int J Sports Med. 2007;28(9):756–761. PubMed ID: 17497569 doi:10.1055/s-2007-964982

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013;43(9):773–781. PubMed ID: 23852425 doi:10.1007/s40279-013-0071-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Vesterinen V, Nummela A, Heikura I, et al. Individual endurance training prescription with heart rate variability. Med Sci Sports Exerc. 2016;48(7):1347–1354. PubMed ID: 26909534 doi:10.1249/MSS.0000000000000910

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Vesterinen V, Häkkinen K, Hynynen E, Mikkola J, Hokka L, Nummela A. Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance runners. Scand J Med Sci Sports. 2013;23(2):171–180. PubMed ID: 21812828 doi:10.1111/j.1600-0838.2011.01365.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(suppl 2):139–147. PubMed ID: 25200666 doi:10.1007/s40279-014-0253-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Bellenger CR, Fuller JT, Thomson RL, Davison K, Robertson EY, Buckley JD. Monitoring athletic training status through autonomic heart rate regulation: a systematic review and meta-analysis. Sports Med. 2016;46(10):1461–1486. PubMed ID: 26888648 doi:10.1007/s40279-016-0484-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Lamberts RP, Swart J, Noakes TD, Lambert MI. Changes in heart rate recovery after high-intensity training in well-trained cyclists. Eur J Appl Physiol. 2009;105(5):705–713. PubMed ID: 19101720 doi:10.1007/s00421-008-0952-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lamberts RP. The Development of an Evidenced-Based Submaximal Cycle Test Designed to Monitor and Predict Cycling Performance: The Lamberts and Lambert Submaximal Cycle Test (LSCT). University of Cape Town; 2009.

    • Search Google Scholar
    • Export Citation
  • 11.

    Decroix L, Lamberts RP, Meeusen R. Can the lamberts and lambert submaximal cycle test reflect overreaching in professional cyclists? Int J Sports Physiol Perform. 2018;13(1):23–28. PubMed ID: 28422523 doi:10.1123/ijspp.2016-0685

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Lamberts RP, Rietjens GJ, Tijdink HH, Noakes TD, Lambert MI. Measuring submaximal performance parameters to monitor fatigue and predict cycling performance: a case study of a world-class cyclo-cross cyclist. Eur J Appl Physiol. 2010;108(1):183–190. PubMed ID: 19921241 doi:10.1007/s00421-009-1291-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European society of cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):1043–1065. PubMed ID: 8598068 doi:10.1161/01.CIR.93.5.1043

    • Search Google Scholar
    • Export Citation
  • 14.

    Plews DJ, Laursen PB, Buchheit M. Day-to-day heart rate variability recordings in World-Champion rowers: appreciating unique athlete characteristics. Int J Sports Physiol Perform. 2017;12(5):697–703. PubMed ID: 27736257 doi:10.1123/ijspp.2016-0343

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart-rate variability and training-intensity distribution in elite rowers. Int J Sports Physiol Perform. 2014;9(6):1026–1032. PubMed ID: 24700160 doi:10.1123/ijspp.2013-0497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur J Appl Physiol. 2012;112(11):3729–3741. PubMed ID: 22367011 doi:10.1007/s00421-012-2354-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Earnest CP, Jurca R, Church TS, Chicharro J, Hoyos J, Lucia A. Relation between physical exertion and heart rate variability characteristics in professional cyclists during the Tour of Spain. Br J Sports Med. 2004;38(5):568–575. PubMed ID: 15388541 doi:10.1136/bjsm.2003.005140

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pichot V, Roche F, Gaspoz JM, et al. Relation between heart rate variability and training load in middle-distance runners. Med Sci Sports Exerc. 2000;32(10):1729–1736. PubMed ID: 11039645 doi:10.1097/00005768-200010000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kiviniemi AM, Hautala AJ, Kinnunen H, Tulppo MP. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol. 2007;101(6):743–751. PubMed ID: 17849143 doi:10.1007/s00421-007-0552-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Botek M, McKune AJ, Krejci J, Stejskal P, Gaba A. Change in performance in response to training load adjustment based on autonomic activity. Int J Sports Med. 2014;35(6):482–488. PubMed ID: 24129989 doi:10.1055/s-0033-1354385

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Schmitt L, Willis SJ, Fardel A, Coulmy N, Millet GP. Live high-train low guided by daily heart rate variability in elite Nordic-skiers. Eur J Appl Physiol. 2018;118(2):419–428. PubMed ID: 29247273 doi:10.1007/s00421-017-3784-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Pallares JG, Moran-Navarro R, Ortega JF, Fernandez-Elias VE, Mora-Rodriguez R. Validity and reliability of ventilatory and blood lactate thresholds in well-trained cyclists. PLoS ONE. 2016;11(9):0163389. PubMed ID: 27657502 doi:10.1371/journal.pone.0163389

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Zadow EK, Kitic CM, Wu SS, Smith ST, Fell JW. Validity of power settings of the Wahoo KICKR Power Trainer. Int J Sports Physiol Perform. 2016;11(8):1115–1117. PubMed ID: 26915606 doi:10.1123/ijspp.2015-0733

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Pettitt RW, Clark IE, Ebner SM, Sedgeman DT, Murray SR. Gas exchange threshold and VO2max testing for athletes: an update. J Strength Cond Res. 2013;27(2):549–555. PubMed ID: 22531615 doi:10.1519/JSC.0b013e31825770d7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Perrotta AS, Jeklin AT, Hives BA, Meanwell LE, Warburton DE. Validity of the elite HRV Smartphone application for examining heart rate variability in a field-based setting. J Strength Cond Res. 2017;31(8):2296–2302. PubMed ID: 28195974 doi:10.1519/JSC.0000000000001841

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Esco MR, Flatt AA. Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: evaluating the agreement with accepted recommendations. J Sports Sci Med. 2014;13(3):535–541. PubMed ID: 25177179

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Niskanen JP, Tarvainen MP, Ranta-Aho PO, Karjalainen PA. Software for advanced HRV analysis. Comput Methods Programs Biomed. 2004;76(1):73–81. PubMed ID: 15313543 doi:10.1016/j.cmpb.2004.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Flatt AA, Esco MR. Heart rate variability stabilization in athletes: towards more convenient data acquisition. Clin Physiol Funct Imaging. 2016;36(5):331–336. PubMed ID: 25754514 doi:10.1111/cpf.12233

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Plews DJ, Laursen PB, Kilding AE, Buchheit M. Evaluating training adaptation with heart-rate measures: a methodological comparison. Int J Sports Physiol Perform. 2013;8(6):688–691. PubMed ID: 23479420 doi:10.1123/ijspp.8.6.688

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    da Silva DF, Ferraro ZM, Adamo KB, Machado FA. Endurance running training individually-guided by HRV in untrained women [published online ahead of print May 30, 2017]. J Strength Cond Res. PubMed ID: 28570494 doi:10.1519/JSC.0000000000002001

    • Search Google Scholar
    • Export Citation
  • 32.

    Stöggl TL, Sperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol. 2015;6:295. PubMed ID: 26578968 doi:10.3389/fphys.2015.00295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):35–44. PubMed ID: 17901124 doi:10.1113/jphysiol.2007.143834

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Nuuttila O-P, Nikander A, Polomoshnov D, Laukkanen JA, Häkkinen K. Effects of HRV-guided vs predetermined block training on performance, HRV and serum hormones. Int J Sports Med. 2017;38(12):909–920. PubMed ID: 28950399 doi:10.1055/s-0043-115122

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Lundby C, Montero D, Joyner M. Biology of VO2max: looking under the physiology lamp. Acta Physiol. 2017;220(2):218–228. PubMed ID: 27888580 doi:10.1111/apha.12827

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Pinot J, Grappe F. A six-year monitoring case study of a top-10 cycling Grand Tour finisher. J Sports Sci. 2015;33(9):907–914. PubMed ID: 25357188 doi:10.1080/02640414.2014.969296

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Swart J, Lamberts RP, Derman W, Lambert MI. Effects of high-intensity training by heart rate or power in well-trained cyclists. J Strength Cond Res. 2009;23(2):619–625. PubMed ID: 19204572 doi:10.1519/JSC.0b013e31818cc5f5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Fernández-García B, Pérez-landaluce J, Rodríguez-Alonso M, Terrados N. Intensity of exercise during road race pro-cycling competition. Med Sci Sports Exerc. 2000;32(5):1002–1006. PubMed ID: 10795793 doi:10.1097/00005768-200005000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Padilla S, Mujika I, Orbañanos J, Santisteban J, Angulo F, Goiriena JJ. Exercise intensity and load during mass-start stage races in professional road cycling. Med Sci Sports Exerc. 2001;33(5):796–802. PubMed ID: 11323551 doi:10.1097/00005768-200105000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Padilla S, Mujika I, Santisteban J, Impellizzeri FM, Goiriena JJ. Exercise intensity and load during uphill cycling in professional 3-week races. Eur J Appl Physiol. 2008;102(4):431–438. PubMed ID: 17978835 doi:10.1007/s00421-007-0602-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Hoff J, Gran A, Helgerud J. Maximal strength training improves aerobic endurance performance. Scand J Med Sci Sports. 2002;12(5):288–295. PubMed ID: 12383074 doi:10.1034/j.1600-0838.2002.01140.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Rønnestad BR, Mujika I. Optimizing strength training for running and cycling endurance performance: a review. Scand J Med Sci Sports. 2014;24(4):603–612. PubMed ID: 23914932 doi:10.1111/sms.12104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Nakamura FY, Flatt AA, Pereira LA, Ramirez-Campillo R, Loturco I, Esco MR. Ultra-short-term heart rate variability is sensitive to training effects in team sports players. J Sports Sci Med. 2015;14(3):602–605. PubMed ID: 26336347

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Flatt AA, Esco MR. Validity of the ithleteTM smart phone application for determining ultra-short-term heart rate variability. J Hum Kinet. 2013;39(1):85–92. PubMed ID: 24511344 doi:10.2478/hukin-2013-0071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1181 1181 101
Full Text Views 36 36 3
PDF Downloads 36 36 3