One-Repetition-Maximum Measures or Maximum Bar-Power Output: Which Is More Related to Sport Performance?

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To compare the associations between optimum power loads and 1-repetition-maximum (1RM) values (assessed in half-squat and jump-squat exercises) and multiple performance measures in elite athletes. Methods: Sixty-one elite athletes (15 Olympians) from 4 different sports (track and field [sprinters and jumpers], rugby sevens, bobsled, and soccer) performed squat and countermovement jumps, half-squat exercise (to assess 1RM), half-squat and jump-squat exercises (to assess bar-power output), and sprint tests (60 m for sprinters and jumpers and 40 m for the other athletes). Pearson product–moment correlation test was used to determine relationships between 1RM and bar-power outputs with vertical jumps and sprint times in both exercises. Results: Overall, both measurements were moderately to near perfectly related to speed performance (r values varying from −.35 to −.69 for correlations between 1RM and sprint times, and from −.36 to −.91 for correlations between bar-power outputs and sprint times; P < .05). However, on average, the magnitude of these correlations was stronger for power-related variables, and only the bar-power outputs were significantly related to vertical jump height. Conclusions: The bar-power outputs were more strongly associated with sprint-speed and power performance than the 1RM measures. Therefore, coaches and researchers can use the bar-power approach for athlete testing and monitoring. Due to the strong correlations presented, it is possible to infer that meaningful variations in bar-power production may also represent substantial changes in actual sport performance.

Loturco, Kobal, and Pereira are with NAR—Nucleus of High Performance in Sport, São Paulo, Brazil. Suchomel is with the Dept of Human Movement Sciences, Carroll University, Waukesha, WI. Bishop is with the London Sport Inst, School of Science and Technology, Middlesex University, London, United Kingdom. McGuigan is with the Sports Performance Research Inst New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand, and the School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.

Loturco (irineu.loturco@terra.com.br) is corresponding author.
International Journal of Sports Physiology and Performance

Article Sections

References

  • 1.

    Kraemer WJAdams KCafarelli Eet al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;34:364380. PubMed ID: 11828249 doi:10.1097/00005768-200205001-00389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kraemer WJFleck SF. Optimizing Strength Training: Designing Nonlinear Periodization Workouts. Champaign, IL: Human Kinetics; 2007.

  • 3.

    Harris NKCronin JBHopkins WGHansen KT. Squat jump training at maximal power loads vs heavy loads: effect on sprint ability. J Strength Cond Res. 2008;22:17421749. PubMed ID: 18978632 doi:10.1519/JSC.0b013e318187458a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    McBride JMTriplett-McBride TDavie ANewton RU. The effect of heavy- vs light-load jump squats on the development of strength, power, and speed. J Strength Cond Res. 2002;16:7582. PubMed ID: 11834109

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Loturco IUgrinowitsch CRoschel HTricoli VGonzalez-Badillo JJ. Training at the optimum power zone produces similar performance improvements to traditional strength training. J Sports Sci Med. 2013;12:109115. PubMed ID: 24149733

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Brown LEWeir JP. ASEP procedures recommendation I: accurate assessment of muscular strength and power. J Exerc Physiol. 2001;4:121.

    • Search Google Scholar
    • Export Citation
  • 7.

    Chapman PPWhitehead JRBinkert RH. The 225-1b reps-to-fatigue test as a submaximal estimate of 1-RM bench press performance in college football players. J Strength Cond Res. 1998;12:258261. doi:10.1519/00124278-199811000-00010

    • Search Google Scholar
    • Export Citation
  • 8.

    Loturco INakamura FYKobal Ret al. Traditional periodization versus optimum training load applied to soccer players: effects on neuromuscular abilities. Int J Sports Med. 2016;37:10511059. PubMed ID: 27706551 doi:10.1055/s-0042-107249

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Banyard HGNosaka KSato KHaff GG. Validity of various methods for determining velocity, force, and power in the back squat. Int J Sports Physiol Perform. 2017;12:11701176. PubMed ID: 28182500 doi:10.1123/ijspp.2016-0627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Gonzalez-Badillo JJPareja-Blanco FRodriguez-Rosell DAbad-Herencia JLDel Ojo-Lopez JJSanchez-Medina L. Effects of velocity-based resistance training on young soccer players of different ages. J Strength Cond Res. 2015;29:13291338. PubMed ID: 25486303 doi:10.1519/JSC.0000000000000764

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Gonzalez-Badillo JJMarques MCSanchez-Medina L. The importance of movement velocity as a measure to control resistance training intensity. J Hum Kinet. 2011;29A:1519. PubMed ID: 23487504 doi:10.2478/v10078-011-0053-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Marques MCvan den Tilaar RVescovi JDGonzalez-Badillo JJ. Relationship between throwing velocity, muscle power, and bar velocity during bench press in elite handball players. Int J Sports Physiol Perform. 2007;2:414422. PubMed ID: 19171959 doi:10.1123/ijspp.2.4.414

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jidovtseff BHarris NKCrielaard JMCronin JB. Using the load-velocity relationship for 1RM prediction. J Strength Cond Res. 2011;25:267270. PubMed ID: 19966589 doi:10.1519/JSC.0b013e3181b62c5f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ruf LChery CTaylor KL. Validity and reliability of the load-velocity relationship to predict the one-repetition maximum in deadlift. J Strength Cond Res. 2018;32:681689. PubMed ID: 29466270 doi:10.1519/JSC.0000000000002369

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Loturco I. Authors’ response to letter to the editor: “Bar velocities capable of optimising the muscle power in strength-power exercises” by Loturco, Pereira, Abad, Tabares, Moraes, Kobal, Kitamura & Nakamura. J Sports Sci. 2018;36(9):994996. PubMed ID: 28686081 doi:10.1080/02640414.2017.1348015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Loturco IKobal RKitamura Ket al. Predictive factors of elite sprint performance: influences of muscle mechanical properties and functional parameters. J Strength Cond Res. In Press. doi:10.1519/JSC.0000000000002196

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Loturco INakamura FYTricoli Vet al. Determining the optimum power load in jump squats using the mean propulsive velocity. PLoS ONE. 2015;10:0140102. PubMed ID: 26444293 doi:10.1371/journal.pone.0140102

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Loturco IPereira LAAbad CCet al. Bar velocities capable of optimising the muscle power in strength-power exercises. J Sports Sci. 2017;35:734741. PubMed ID: 27210829 doi:10.1080/02640414.2016.1186813

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    McBride JMBlow DKirby TJHaines TLDayne AMTriplett NT. Relationship between maximal squat strength and five, ten, and forty yard sprint times. J Strength Cond Res. 2009;23:16331636. PubMed ID: 19675504 doi:10.1519/JSC.0b013e3181b2b8aa

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Suchomel TJNimphius SStone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46:14191449. PubMed ID: 26838985 doi:10.1007/s40279-016-0486-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Loturco IPereira LAKobal Ret al. Validity and usability of a new system for measuring and monitoring variations in vertical jump performance. J Strength Cond Res. 2017;31:25792585. PubMed ID: 28658079 doi:10.1519/JSC.0000000000002086

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Wisloff UCastagna CHelgerud JJones RHoff J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med. 2004;38:285288. PubMed ID: 15155427 doi:10.1136/bjsm.2002.002071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Requena BGarcia IRequena Fde Villarreal ESCronin JB. Relationship between traditional and ballistic squat exercise with vertical jumping and maximal sprinting. J Strength Cond Res. 2011;25:21932204. PubMed ID: 21572354 doi:10.1519/JSC.0b013e3181e86132

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Loturco ID’Angelo RAFernandes Vet al. Relationship between sprint ability and loaded/unloaded jump tests in elite sprinters. J Strength Cond Res. 2015;29:758764. PubMed ID: 25162648 doi:10.1519/JSC.0000000000000660

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Loturco IPereira LAZanetti Vet al. Mechanical differences between barbell and body optimum power loads in the jump squat exercise. J Hum Kinet. 2016;54:153162. PubMed ID: 28031767 doi:10.1515/hukin-2016-0044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cormie PMcGuigan MRNewton RU. Developing maximal neuromuscular power: part 2—training considerations for improving maximal power production. Sports Med. 2011;41:125146. PubMed ID: 21244105 doi:10.2165/11538500-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Cormie PMcGuigan MRNewton RU. Developing maximal neuromuscular power: part 1—biological basis of maximal power production. Sports Med. 2011;41:1738. PubMed ID: 21142282 doi:10.2165/11537690-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Loturco IPereira LAMoraes JEet al. Jump-squat and half-squat exercises: selective influences on speed-power performance of elite rugby sevens players. PLoS ONE. 2017;12:e0170627. PubMed ID: 28114431 doi:10.1371/journal.pone.0170627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Loturco IArtioli GGKobal RGil SFranchini E. Predicting punching acceleration from selected strength and power variables in elite karate athletes: a multiple regression analysis. J Strength Cond Res. 2014;28:18261832. PubMed ID: 24276310 doi:10.1519/JSC.0000000000000329

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Loturco INakamura FYArtioli GGet al. Strength and power qualities are highly associated with punching impact in elite amateur boxers. J Strength Cond Res. 2016;30:109116. PubMed ID: 26110348 doi:10.1519/JSC.0000000000001075

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 281 281 267
Full Text Views 3 3 3
PDF Downloads 4 4 4

Altmetric Badge

PubMed

Google Scholar