Effects of a Short Daytime Nap on Shooting and Sprint Performance in High-Level Adolescent Athletes

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To investigate the sport-specific performance effect of a brief afternoon nap on high-level Asian adolescent student-athletes who were habitually short sleepers. Methods: Participants were randomly assigned to a nap or nonnap (reading) condition. In the first study, 12 male shooters (13.8 [1.0] y) performed a shooting assessment (20 competition shots) with heart-rate variability monitored during the assessment. In the second study, 19 male track-and-field athletes (14.8 [1.1] y) performed a 20-m sprint-performance assessment. Subjective measures of sleepiness and alertness were obtained in both studies. Results: The brief nap had no effect on any measure of shooting performance (P > .05) or autonomic function (P > .05) in shooters. However, the fastest 20-m sprint times increased significantly (P < .05) from 3.385 (0.128) s to 3.411 (0.143) s, with mean 2-m times trending toward significance (P < .1) among the track-and-field athletes. No significant differences were observed in any other measures. Conclusions: The results of the research indicate varying effects of naps between sport-specific performance measures. Napping had no effect on shooting performance, whereas a negative effect existed in 20-m sprint performance, potentially due to sleep inertia. Considering these findings, some caution is warranted when advocating naps for adolescent athletes.

Suppiah and Chia are with Physical Education and Sports Science, National Inst of Education, Nanyang Technological University, Singapore, Singapore. Suppiah, Low, and Choong are with the National Youth Sports Inst, Singapore, Singapore.

Suppiah (haresh_suppiah@nysi.org.sg) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Gradisar MGardner GDohnt H. Recent worldwide sleep patterns and problems during adolescence: a review and meta-analysis of age, region, and sleep. Sleep Med. 2011;12(2):110118. PubMed ID: 21257344 doi:10.1016/j.sleep.2010.11.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Carskadon MA. Sleep in adolescents: the perfect storm. Pediatr Clin North Am. 2011;58(3):637647. PubMed ID: 21600346 doi:10.1016/j.pcl.2011.03.003

  • 3.

    Cain NGradisar M. Electronic media use and sleep in school-aged children and adolescents: a review. Sleep Med. 2010;11(8):735742. PubMed ID: 20673649 doi:10.1016/j.sleep.2010.02.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Matricciani LOlds TPetkov J. In search of lost sleep: secular trends in the sleep time of school-aged children and adolescents. Sleep Med Rev. 2012;16(3):203211. PubMed ID: 21612957 doi:10.1016/j.smrv.2011.03.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Buckhalt JASuh S. Research on sleep of children and adolescents: implications for East Asian counselors. J Asia Pacific Counseling. 2014;4(1):3147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Shochat TCohen-Zion MTzischinsky O. Functional consequences of inadequate sleep in adolescents: a systematic review. Sleep Med Rev. 2014;18(1):7587. PubMed ID: 23806891 doi:10.1016/j.smrv.2013.03.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Astill RGVan der Heijden KBVan Ijzendoorn MHVan Someren EJ. Sleep, cognition, and behavioral problems in school-age children: a century of research meta-analyzed. Psychol Bull. 2012;138(6):11091138. PubMed ID: 22545685 doi:10.1037/a0028204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Fullagar HHSkorski SDuffield RHammes DCoutts AJMeyer T. Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015;45(2):161186. PubMed ID: 25315456 doi:10.1007/s40279-014-0260-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Suppiah HTLow CYChia M. Effects of sports training on sleep characteristics of Asian adolescent athletes. Biol Rhythm Res. 2015;46(4):523536. doi:10.1080/09291016.2015.1026673

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Bergeron MFMountjoy MArmstrong Net al. International Olympic Committee consensus statement on youth athletic development. Br J Sports Med. 2015;49(13):843851. PubMed ID: 26084524 doi:10.1136/bjsports-2015-094962

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Le Meur YDuffield RSkein M. Sleep. In: Hausswirth CMujika I eds. Recovery for Performance in Sport. Champaign, IL: Human Kinetics; 2013:99110.

    • Search Google Scholar
    • Export Citation
  • 12.

    Schwartz JSimon RD Jr. Sleep extension improves serving accuracy: a study with college varsity tennis players. Physiol Behav. 2015;151:541544. PubMed ID: 26325012 doi:10.1016/j.physbeh.2015.08.035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Lovato NLack L. The effects of napping on cognitive functioning. Prog Brain Res. 2010;185:155166.

  • 14.

    Horne JAnderson CPlatten C. Sleep extension versus nap or coffee, within the context of ‘sleep debt’. J Sleep Res. 2008;17(4):432436. PubMed ID: 19021851 doi:10.1111/jsr.2008.17.issue-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Waterhouse JAtkinson GEdwards BReilly T. The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation. J Sports Sci. 2007;25(14):15571566. PubMed ID: 17852691 doi:10.1080/02640410701244983

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Sargent CLastella MHalson SLRoach GD. The impact of training schedules on the sleep and fatigue of elite athletes. Chronobiol Int. 2014;31(10):11601168. PubMed ID: 25222347 doi:10.3109/07420528.2014.957306

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Tassi PMuzet A. Sleep inertia. Sleep Med Rev. 2000;4(4):341353. PubMed ID: 12531174 doi:10.1053/smrv.2000.0098

  • 18.

    Brooks ALack L. A brief afternoon nap following nocturnal sleep restriction: which nap duration is most recuperative? Sleep. 2006;29(6):831840. PubMed ID: 16796222 doi:10.1093/sleep/29.6.831

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lovato NLack L. The effects of napping on cognitive functioning. Prog Brain Res. 2010;185:155166. PubMed ID: 21075238 doi:10.1016/B978-0-444-53702-7.00009-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Slater JABotsis TWalsh JKing SStraker LMEastwood PR. Assessing sleep using hip and wrist actigraphy. Sleep Biol Rhythm. 2015;13(2):172180. doi:10.1111/sbr.12103

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Gradisar MWright HRobinson JPaine SGamble A. Adolescent napping behavior: comparisons of school week versus weekend sleep patterns. Sleep Biol Rhythm. 2008;6(3):183186. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    dancodru. ZeoScope. August 2011. https://github.com/dancodru/ZeoScope. Accessed November 23 2013.

    • Export Citation
  • 23.

    Shambroom JRFabregas SEJohnstone J. Validation of an automated wireless system to monitor sleep in healthy adults. J Sleep Res. 2012;21(2):221230. PubMed ID: 21859438 doi:10.1111/jsr.2012.21.issue-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Tietzel AJLack LC. The short-term benefits of brief and long naps following nocturnal sleep restriction. Sleep. 2001;24(3):293300. PubMed ID: 11322712 doi:10.1093/sleep/24.3.293

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    International Shooting Sport Federation (ISSF). Official Statutes Rules and Regulations. Munich, Germany;2013.

  • 26.

    Marques AHSilverman MNSternberg EM. Evaluation of stress systems by applying noninvasive methodologies: measurements of neuroimmune biomarkers in the sweat, heart rate variability and salivary cortisol. Neuroimmunomodulation. 2010;17(3):205208. PubMed ID: 20134204 doi:10.1159/000258725

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Andrade MBenedito-Silva ADomenice SArnhold IMenna-Barreto L. Sleep characteristics of adolescents: a longitudinal study. J Adolescent Health. 1993;14(5):401406. PubMed ID: 8399254 doi:10.1016/S1054-139X(08)80016-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Ohayon MMCarskadon MAGuilleminault CVitiello MV. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep. 2004;27(7):12551273. PubMed ID: 15586779 doi:10.1093/sleep/27.7.1255

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    O’Keeffe GClarke-Pearson K; Council on Communications and Media. The impact of social media on children, adolescents, and families. Pediatrics. 2011;127(4):800804. PubMed ID: 21444588 doi:10.1542/peds.2011-0054

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Feinberg ICampbell IG. Sleep EEG changes during adolescence: an index of a fundamental brain reorganization. Brain Cogn. 2010;72(1):5665. PubMed ID: 19883968 doi:10.1016/j.bandc.2009.09.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Sun WQSpruyt KChen WJet al. The relation among sleep duration, homework burden, and sleep hygiene in Chinese school-aged children. Behav Sleep Med. 2014;12(5):398411. PubMed ID: 24188543 doi:10.1080/15402002.2013.825837

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Suppiah HTYong LCChee Wei GCChia M. Restricted and unrestricted sleep schedules of Asian adolescent, high-level student athletes: effects on sleep durations, marksmanship and cognitive performance. Biol Rhythm Res. 2016;47(4):505518. doi:10.1080/09291016.2016.1151102

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Suppiah HTLow CYChia M. Effects of sport-specific training intensity on sleep patterns and psychomotor performance in adolescent athletes. Pediatr Exerc Sci. 2016;28(4):588595. PubMed ID: 26757487 doi:10.1123/pes.2015-0205

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Balkin TJBraun ARWesensten NJet al. The process of awakening: a PET study of regional brain activity patterns mediating the re-establishment of alertness and consciousness. Brain. 2002;125(pt 10):23082319. PubMed ID: 12244087 doi:10.1093/brain/awf228

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Konishi MTakahashi MEndo Net al. Effects of sleep deprivation on autonomic and endocrine functions throughout the day and on exercise tolerance in the evening. J Sports Sci. 2013;31(3):248255. PubMed ID: 23078578 doi:10.1080/02640414.2012.733824

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Paul MGarg K. The effect of heart rate variability biofeedback on performance psychology of basketball players. Appl Psychophysiol Biofeedback. 2012;37(2):131144. PubMed ID: 22402913 doi:10.1007/s10484-012-9185-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Cellini NWhitehurst LNMcDevitt EAMednick SC. Heart rate variability during daytime naps in healthy adults: autonomic profile and short-term reliability. Psychophysiology. 2016;53(4):473481. PubMed ID: 26669510 doi:10.1111/psyp.2016.53.issue-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Santhi NGroeger JAArcher SNGimenez MSchlangen LJDijk DJ. Morning sleep inertia in alertness and performance: effect of cognitive domain and white light conditions. PLoS ONE. 2013;8(11):79688. PubMed ID: 24260280 doi:10.1371/journal.pone.0079688

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    McDevitt EAAlaynick WAMednick SC. The effect of nap frequency on daytime sleep architecture. Physiol Behav. 2012;107(1):4044. PubMed ID: 22659474 doi:10.1016/j.physbeh.2012.05.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Milner CEFogel SMCote KA. Habitual napping moderates motor performance improvements following a short daytime nap. Biol Psychol. 2006;73(2):141156. PubMed ID: 16540232 doi:10.1016/j.biopsycho.2006.01.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    De Gennaro LFerrara M. Sleep spindles: an overview. Sleep Med Rev. 2003;7(5):423440. PubMed ID: 14573378 doi:10.1053/smrv.2002.0252

  • 42.

    Fogel SMSmith CT. The function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neurosci Biobehav Rev. 2011;35(5):11541165. doi:10.1016/j.neubiorev.2010.12.003

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 119 119 39
Full Text Views 8 8 0
PDF Downloads 3 3 0
Altmetric Badge
PubMed
Google Scholar