Effect of Environmental Temperature on High-Intensity Intervals in Well-Trained Cyclists

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To examine the effect of environmental temperature (TA) on performance and physiological responses (eg, body temperature, cardiopulmonary measures) during a high-intensity aerobic interval session. It was hypothesized that power output would be highest in the 13°C condition and lower in the 5°C, 22°C, and 35°C conditions. Methods: Eleven well-trained cyclists randomly completed 4 interval sessions at 5°C, 13°C, 22°C, and 35°C (55% [13%] relative humidity), each involving five 4-min intervals interspersed with 5 min of recovery. During the intervals, power output, core temperature (TC), skin temperature, VO2, and heart rate were recorded. Results: Mean session power output for 13°C (366 [32] W) was not higher than 5°C (363 [32] W; P = 1.00, effect size = 0.085), 22°C (364 [36] W; P = 1.00, effect size = 0.061), or 35°C (352 [31] W; P = .129, effect size = 0.441). The 5th interval of the 35°C condition had a lower power output compared with all other TA. TC was higher in 22°C compared with both 5°C and 13°C (P = .001). VO2 was not significantly different across TA (P = .187). Heart rate was higher in the 4th and 5th intervals of 35°C compared with 5°C and 13°C. Conclusions: This study demonstrates that while mean power outputs for intervals are similar across TA, hot TA (≥35°C) reduces interval power output later in a training session. Well-trained cyclists performing maximal high-intensity aerobic intervals can achieve near-optimal power output over a broader range of TA than previous literature would indicate.

Boynton, Menaspà, and Abbiss are with the Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia. Danner is with the Dept of Sport Science, University of Konstanz, Konstanz, Germany. Peiffer is with the College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia.

Boynton (j.boynton@ecu.edu.au) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Sawka MNYoung AJCadarette BSLevine LPandolf KB. Influence of heat stress and acclimation on maximal aerobic power. Eur J Appl Physiol. 1985;53:294298. doi:10.1007/BF00422841

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Galloway SDRMaughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc. 1997;29(9):12401249. PubMed ID: 9309637 doi:10.1097/00005768-199709000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bergh UEkblom B. Physical performance and peak aerobic power at different body temperatures. J Appl Physiol. 1979;46:885889. PubMed ID: 468604 doi:10.1152/jappl.1979.46.5.885

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Ely MRCheuvront SNRoberts WOMontain SJ. Impact of weather on marathon-running performance. Med Sci Sports Exerc. 2007;39(3):487493. PubMed ID: 17473775 doi:10.1249/mss.0b013e31802d3aba

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ely MRMartin DECheuvront SNMontain SJ. Effect of ambient temperature on marathon pacing is dependent on runner ability. Med Sci Sports Exerc. 2008;40(9):16751680. PubMed ID: 18685522 doi:10.1249/MSS.0b013e3181788da9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Peiffer JJAbbiss CR. Influence of environmental temperature on 40 km cycling time-trial performance. Int J Sports Physiol Perform. 2011;6(2):208220. PubMed ID: 21725106 doi:10.1123/ijspp.6.2.208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Saunders AGDugas JPTucker RLambert MINoakes TD. The effects of different air velocities on heat storage and body temperature in humans cycling in a hot, humid environment. Acta Psychiatr Scand. 2005;183:241255. doi:10.1111/j.1365-201X.2004.01400.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Stöggl TLSperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol. 2015;6:115. doi:10.3389/fphys.2015.00295

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Vogt SHeinrich LSchumacher YOet al. Power output during stage racing in professional road cycling. Med Sci Sports Exerc. 2006;38(1):147151. PubMed ID: 16394967 doi:10.1249/01.mss.0000183196.63081.6a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Stöggl TSperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol. 2014;5:33.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Laursen PBBlanchard MAJenkins DG. Acute high-intensity interval training improves Tvent and peak power output in highly trained males. Can J Appl Physiol. 2002;27(4):336348. doi:10.1139/h02-019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Parolin MLChesley AMatsos MPSpriet LLJones NLHeigenhauser GJ. Regulation of skeletal muscle glycogen phoshorylase and PDH during intermittent exercise. Am J Physiol Cell Physiol. 1999;277(5):E890E900.

    • Search Google Scholar
    • Export Citation
  • 13.

    Saltin BHermansen L. Esophageal, rectal, and muscle temperature during exercise. Eur J Appl Physiol. 1966;21(6):17571762. doi:10.1152/jappl.1966.21.6.1757

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Drust BRasmussen PMohr MNielsen BNybo L. Elevations in core and muscle temperature impairs repeated sprint performance. Acta Psychiatr Scand. 2005;183:181190. doi:10.1111/j.1365-201X.2004.01390.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Jeukendrup AECraig NPHawley JA. The bioenergetics of world class cycling. J Sci Med Sport. 2000;3(4):414433. PubMed ID: 11235007 doi:10.1016/S1440-2440(00)80008-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    De Pauw KRoelands BCheung SSde Geus BRietjens GMeeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Janes AFoster Cde Koning JJet al. Effect of warm-up on cycling time trial performance. Med Sci Sports Exerc. 2004;36:S123S128. doi:10.1097/00005768-200405001-00584

    • Search Google Scholar
    • Export Citation
  • 18.

    Shaffrath JDAdams WC. Effects of airflow and work load on cardiovascular drift and skin blood flow. J Appl Physiol. 1984;56(5):14111417. PubMed ID: 6725094 doi:10.1152/jappl.1984.56.5.1411

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Olds TNorton K eds. International Standards for Anthropometric Assessment. 2001:1139. Underdale, SA, Australia: University of South Australia.

    • Search Google Scholar
    • Export Citation
  • 20.

    Reilly TBrooks GA. Exercise and the circadian variation in body temperature teasures. Int J Sports Med. 1986;7(6):358362. PubMed ID: 3804546 doi:10.1055/s-2008-1025792

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Buchheit MLaursen PB. High-intensity interval training, solutions to the programming puzzle. Sports Med. 2013;43(5):313338. PubMed ID: 23539308 doi:10.1007/s40279-013-0029-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Zhang HHuizenga CArens EWang D. Thermal sensation and comfort in transient non-uniform thermal environments. Eur J Appl Physiol. 2004;92(6):728733. PubMed ID: 15221406 doi:10.1007/s00421-004-1137-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Daanen HAMLamberts RPKallen VLJin AVan Meeteren NLU. A systematic review on heart-rate recovery to monitor changes in training status in athletes. Int J Sports Physiol Perform. 2012;7(3):251260. PubMed ID: 22357753 doi:10.1123/ijspp.7.3.251

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ramanathan NL. A new weighting system for mean surface temperature of the human body. J Appl Physiol. 1964;19(3):531533. doi:10.1152/jappl.1964.19.3.531

  • 26.

    Colin JTimbal JHoudas YBoutelier CGuieu JD. Computation of mean body temperature from rectal and skin temperatures. Eur J Appl Physiol. 1971;31(3):16.

    • Search Google Scholar
    • Export Citation
  • 27.

    González-Alonso JCalbet JAL. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation. 2003;107(6):824830. doi:10.1161/01.CIR.0000049746.29175.3F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Périard JDCramer MNChapman PGCaillaud CThompson MW. Cardiovascular strain impairs prolonged self-paced exercise in the heat. Exp Physiol. 2010;96(2):134144. PubMed ID: 20851861 doi:10.1113/expphysiol.2010.054213

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bishop D. Warm up II. Sports Med. 2003;33(7):483498. PubMed ID: 12762825 doi:10.2165/00007256-200333070-00002

  • 30.

    Midgley AWMcNaughton LRWilkinson M. Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners? Sports Med. 2006;36(2):117132. PubMed ID: 16464121 doi:10.2165/00007256-200636020-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 9 9 9
Full Text Views 3 3 3
PDF Downloads 4 4 4
Altmetric Badge
PubMed
Google Scholar