Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To gain insight into the development of pacing behavior of youth athletes in 1500-m short-track speed-skating competition. Methods: Lap times and positioning of elite short-track skaters during the seasons 2011/2012–2015/2016 were analyzed (N = 9715). The participants were grouped into age groups: under 17 (U17), under 19 (U19), under 21 (U21), and senior. The difference between age groups, sexes, and stages of competition within each age group were analyzed through a multivariate analysis of variance (P < .05) of the relative section times (lap time as a percentage of total race time) per lap and by analyzing Kendall tau-b correlations between intermediate positioning and final ranking. Results: The velocity distribution over the race differed between all age groups, explicitly during the first 4 laps (U17: 7.68% [0.80%], U19: 7.77% [0.81%], U21: 7.82% [0.81%], and senior: 7.80% [0.82%]) and laps 12, 13, and 14 (U17: 6.92% [0.14%], U19: 6.83% [0.13%], U21: 6.79% [0.14%], and senior: 6.69% [0.12%]). In all age groups, a difference in velocity distribution was found between the sexes and between finalists and nonfinalists. Positioning data demonstrated that youth skaters showed a higher correlation between intermediate position and final ranking in laps 10, 11, and 12 than seniors. Conclusions: Youth skaters displayed less conservative pacing behavior than seniors. The pacing behavior of youths, expressed in relative section times and positioning, changed throughout adolescence and came to resemble that of seniors. Pacing behavior and adequately responding to environmental cues in competition could therefore be seen as a self-regulatory skill that is under development throughout adolescence.

Menting, Konings, and Hettinga are with the School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Wivenhoe, United Kingdom. Menting and Elferink-Gemser are with the University Medical Center Groningen, Center of Human Movement Sciences, University of Groningen, Groningen, the Netherlands.

Hettinga (fjhett@essex.ac.uk) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    van Ingen Schenau GDe Koning JDe Groot G. The distribution of anaerobic energy in 1000 and 4000 metre cycling bouts. Int J Sports Med. 1992;13(6):447451. PubMed ID: 1428374 doi:10.1055/s-2007-1021296

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Foster CDe Koning JJHettinga Fet al. Pattern of energy expenditure during simulated competition. Med Sci Sports Exerc. 2003;35(5):826831. PubMed ID: 12750593 doi:10.1249/01.MSS.0000065001.17658.68

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Edwards AMGuy JHHettinga FJ. Oxford and Cambridge boat race: performance, pacing and tactics between 1890 and 2014. Sports Med. 2016;46(10):15531562. PubMed ID: 27012970 doi:10.1007/s40279-016-0524-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Konings MJNoorbergen OSParry DHettinga FJ. Pacing behavior and tactical positioning in 1500-m short-track speed skating. Int J Sports Physiol Perform. 2016;11(1):122129. PubMed ID: 26062042 doi:10.1123/ijspp.2015-0137

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hettinga FJKonings MJPepping GJ. The science of racing against opponents: affordance competition and the regulation of exercise intensity in head-to-head competition. Front Physiol. 2017;8:118. doi:10.3389/fphys.2017.00118

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hettinga FJDe Koning JJFoster C. VO2 response in supramaximal cycling time trial exercise of 750 to 4000 m. Med Sci Sports Exerc. 2009;41(1):230236. PubMed ID: 19092684. doi:10.1249/MSS.0b013e3181831f0f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    De Koning JJFoster CBakkum Aet al. Regulation of pacing strategy during athletic competition. PLoS ONE. 2011;6(1):15863. PubMed ID: 21283744 doi:10.1371/journal.pone.0015863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Konings MJHettinga FJ. The impact of different competitive environments on pacing and performance. Int J Sports Physiol Perform. 2018;13(6):701708. PubMed ID: 29035590 doi:10.1123/ijspp.2017-0407

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    De Koning JJFoster CLucia ABobbert MFHettinga FJPorcari JP. Using modeling to understand how athletes in different disciplines solve the same problem: swimming versus running versus speed skating. Int J Sports Physiol Perform. 2011;6(2):276280. PubMed ID: 21725112 doi:10.1123/ijspp.6.2.276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Smits BLPepping G-JHettinga FJ. Pacing and decision making in sport and exercise: the roles of perception and action in the regulation of exercise intensity. Sports Med. 2014;44(6):763775. PubMed ID: 24706362 doi:10.1007/s40279-014-0163-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Edwards AMPolman RC. Pacing and awareness: brain regulation of physical activity. Sports Med. 2013;43(11):10571064. PubMed ID: 23990402 doi:10.1007/s40279-013-0091-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Foster CHendrickson KJPeyer Ket al. Pattern of developing the performance template. Br J Sports Med. 2009;43(10):765769. PubMed ID: 19124526 doi:10.1136/bjsm.2008.054841

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Elferink-Gemser MTHettinga FJ. Pacing and self-regulation: important skills for talent development in endurance sports. Int J Sports Physiol Perform. 2017;12(6):831835. PubMed ID: 28605209 doi:10.1123/ijspp.2017-0080

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Micklewright DAngus CSuddaby JSt Clair GASandercock GChinnasamy C. Pacing strategy in schoolchildren differs with age and cognitive development. Med Sci Sports Exerc. 2012;44(2):362369. PubMed ID: 21796049 doi:10.1249/MSS.0b013e31822cc9ec

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lambrick DRowlands ARowland TEston R. Pacing strategies of inexperienced children during repeated 800 m individual time-trials and simulated competition. Pediatr Exerc Sci. 2013;25(2):198211. PubMed ID: 23504805 doi:10.1123/pes.25.2.198

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Mauger ARJones AMWilliams CA. Influence of feedback and prior experience on pacing during a 4-km cycle time trial. Med Sci Sports Exerc. 2009;41(2):451458. PubMed ID: 19127178 doi:10.1249/MSS.0b013e3181854957

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Reid JCGreene RMHerat NHodgson DDHalperin IBehm DG. Knowledge of repetition range does not affect maximal force production strategies of adolescent females. Pediatr Exerc Sci. 2017;29(1):109115. PubMed ID: 27633492 doi:10.1123/pes.2016-0096

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Beunen GPMalina RMRenson RSimons JOstyn MLefevre J. Physical activity and growth, maturation and performance: a longitudinal study. Med Sci Sports Exerc. 1992;24(5):576585. PubMed ID: 1569854 doi:10.1249/00005768-199205000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Giedd JNBlumenthal JJeffries NOet al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2(10):861863. PubMed ID: 10491603 doi:10.1038/13158

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    van der Stel MVeenman MV. Relation between intellectual ability and metacognitive skillfulness as predictors of learning performance of young students performing tasks in different domains. Learn Individ Differ. 2008;18(1):128134. doi:10.1016/j.lindif.2007.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Wiersma RStoter IKVisscher CHettinga FJElferink-Gemser MT. Development of 1500 m pacing behavior in junior speed skaters: a longitudinal study. Int J Sports Physiol Perform. 2017:2(9):12241231. PubMed ID: 28253043 doi:10.1123/ijspp.2016-0517

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Konings MJElferink-Gemser MTStoter IKvan der Meer DOtten EHettinga FJ. Performance characteristics of long-track speed skaters: a literature review. Sports Med. 2015;45(4):505516. PubMed ID: 25547998 doi:10.1007/s40279-014-0298-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hettinga FJKonings MJCooper CE. Differences in muscle oxygenation, perceived fatigue and recovery between long-track and short-track speed skating. Front Physiol. 2016;7:619. PubMed ID: 28018244 doi:10.3389/fphys.2016.00619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Noorbergen OSKonings MJMicklewright DElferink-Gemser MTHettinga FJ. pacing behavior and tactical positioning in 500-and 1000-m short-track speed skating. Int J Sports Physiol Perform. 2016;11(6):742748. PubMed ID: 26641204 doi:10.1123/ijspp.2015-0384

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Konings MJHettinga FJ. Objectifying tactics: athlete and race variability in elite short-track speed skating. Int J Sports Physiol Perform. 2018;13(2):170175. PubMed ID: 28530528 doi:10.1123/ijspp.2016-0779

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lander PJButterly RJEdwards AM. Self-paced exercise is less physically challenging than enforced constant pace exercise of the same intensity: influence of complex central metabolic control. Br J Sports Med. 2009;43(10):789795. PubMed ID: 19196729 doi:10.1136/bjsm.2008.056085

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Yanagiya TKanehisa HKouzaki MKawakami YFukunaga T. Effect of gender on mechanical power output during repeated bouts of maximal running in trained teenagers. Int J Sports Med. 2003;24(04):304310. PubMed ID: 12784174 doi:10.1055/s-2003-39508

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Muehlbauer TSchindler CPanzer S. Pacing and performance in competitive middle-distance speed skating. Res Q Exerc Sport. 2010;81(1):16. PubMed ID: 20387393 doi:10.1080/02701367.2010.10599622

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Abbiss CRStraker LQuod MJMartin DTLaursen PB. Examining pacing profiles in elite female road cyclists using exposure variation analysis. Br J Sports Med. 2010;44(6):437442. PubMed ID: 18523040 doi:10.1136/bjsm.2008.047787

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Blakemore SJBurnett SDahl RE. The role of puberty in the developing adolescent brain. Hum Brain Mapp. 2010;31(6):926933. PubMed ID: 20496383 doi:10.1002/hbm.21052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Crone EADahl RE. Understanding adolescence as a period of social–affective engagement and goal flexibility. Nat Rev Neurosci. 2012;13(9):636650. PubMed ID: 22903221 doi:10.1038/nrn3313

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Van Biesen DHettinga FJMcCulloch KVanlandewijck YC. Pacing ability in elite runners with intellectual impairment. Med Sci Sports Exerc. 2017;49(3):588594. PubMed ID: 27749685 doi:10.1249/MSS.0000000000001115

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 81 81 34
Full Text Views 15 15 7
PDF Downloads 11 11 7
Altmetric Badge
PubMed
Google Scholar
Cited By