The Effect of 4-Week Stroboscopic Training on Visual Function and Sport-Specific Visuomotor Performance in Top-Level Badminton Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: Stroboscopic training is suggested to improve visuomotor abilities in sports. However, previous research has primarily focused on untrained participants and only considered behavioral data. Because visuomotor performance is substantially determined by neural visual processes, this study aimed to examine the effects of stroboscopic training on visuomotor performance and neural visual function of athletes. Methods: A total of 10 German top-level badminton players (intervention: n = 5 and control: n = 5) participated in this study. Over a 4-week training period, athletes performed badminton-specific visuomotor tasks either wearing shutter glasses (intervention) or under normal visual conditions (control). Prior to and after the training period, behavioral smash-defense tests and neurophysiologic investigations of the N2 motion onset visual evoked potential were used to identify modulations in the athletes’ visuomotor performance and visual perception speed, respectively. Results: Badminton training improved visuomotor performance in both groups; however, stroboscopic training resulted in superior posttraining performance compared with normal visual conditions (P = .007). Training-induced modulations in N2 latency did not reach significance, although a strong relationship was observed between changes in N2 latency and changes in visuomotor performance (r = −.55), indicating that higher performance gains following training were associated with a stronger reduction in N2 latency. Conclusions: The results indicate that stroboscopic training may be more effective than conventional visuomotor training for improving visuomotor abilities even in athletes performing at high skill levels. Furthermore, visuomotor performance gains could potentially be mediated by neural adaptations in the visual motion system. These findings should be confirmed for athletes from different disciplines.

Hülsdünker, Rentz, Strüder, and Mierau are with the Inst of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany. Hülsdünker and Mierau are with the Dept of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg. Ruhnow and Käsbauer are with German Badminton Association, Mülheim an der Ruhr, Germany.

Mierau (andreas.mierau@lunex-university.net) is corresponding author.
  • 1.

    Nakamoto H, Mori S. Effects of stimulus-response compatibility in mediating expert performance in baseball players. Brain Res. 2008;1189:179–188. PubMed ID: 18048011 doi:10.1016/j.brainres.2007.10.096

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Nakamoto H, Mori S. Sport-specific decision-making in a Go/NoGo reaction task: difference among nonathletes and baseball and basketball players. Percept Mot Skills. 2008;106:163–170. PubMed ID: 18459365 doi:10.2466/pms.106.1.163-170

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Zwierko T. Differences in peripheral perception between athletes and nonathletes. J Hum Kinet. 2008;19:53–62. doi:10.2478/v10078-008-0004-z

  • 4.

    Hülsdünker T, Strüder HK, Mierau A. Visual motion processing subserves faster visuomotor reaction in badminton players. Med Sci Sports Exerc. 2017;49:1097–1110. PubMed ID: 28072633 doi:10.1249/MSS.0000000000001198

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    de Loureiro LFB, de Freitas PB. Influence of the performance level of badminton players in neuromotor aspects during a target-pointing task [Ncia do n?vel de desempenho de jogadores de badminton em aspectos neuromotores durante uma tarefa de apontar um alvo]. Rev Bras Med Esporte. 2012;18:203–207. doi:10.1590/S1517-86922012000300014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Ando S, Kida N, Oda S. Central and peripheral visual reaction time of soccer players and nonathletes. Percept Mot Skills. 2001;92:786–794. PubMed ID: 11453206 doi:10.2466/pms.2001.92.3.786

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Zwierko T, Osinski W, Lubinski W, Czepita D, Florkiewicz B. Speed of visual sensorimotor processes and conductivity of visual pathway in volleyball players. J Hum Kinet. 2010;23:21–27. doi:10.2478/v10078-010-0003-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hülsdünker T, Strüder HK, Mierau A. Visual but not motor processes predict simple visuomotor reaction time of badminton players. Eur J Sport Sci. 2017;71:1–11. doi:10.1080/17461391.2017.1395912

    • Search Google Scholar
    • Export Citation
  • 9.

    Bennett S, Ashford D, Rioja N, Elliott D. Intermittent vision and one-handed catching: the effect of general and specific task experience. J Mot Behav. 2004;36:442–449. PubMed ID: 15695232 doi:10.3200/JMBR.36.4.442-449

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Appelbaum LG, Cain MS, Schroeder JE, Darling EF, Mitroff SR. Stroboscopic visual training improves information encoding in short-term memory. Atten Percept Psychophys. 2012;74:1681–1691. PubMed ID: 22810559 doi:10.3758/s13414-012-0344-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Appelbaum LG, Schroeder JE, Cain MS, Mitroff SR. Improved visual cognition through stroboscopic training. Front Psychol. 2011;2:276. PubMed ID: 22059078 doi:10.3389/fpsyg.2011.00276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mitroff SR, Friesen P, Bennett D, Yoo H, Reichow AW. Enhancing ice hockey skills through stroboscopic visual training: a pilot study. Athl Train Sports Health Care. 2013;5:261–264. doi:10.3928/19425864-20131030-02

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Kremlacek J, Kuba M, Kubova Z, Chlubnova J. Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol. 2004;109:169–175. PubMed ID: 15881263 doi:10.1007/s10633-004-4048-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kremlacek J, Kuba M, Kubova Z, Langrova J, Vit F, Szanyi J. Within-session reproducibility of motion-onset VEPs: effect of adaptation/habituation or fatigue on N2 peak amplitude and latency. Doc Ophthalmol. 2007;115:95–103. PubMed ID: 17541662 doi:10.1007/s10633-007-9063-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    deWinter J. Using the student’s t-test with extremely small sample sizes. Pract Assess Res Eval. 2013;18:1–12.

  • 16.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Erlbaum; 1988.

  • 17.

    Smith TQ, Mitroff SR. Stroboscopic training enhances anticipatory timing. Int J Exerc Sci. 2012;5:344–353. PubMed ID: 27182391

  • 18.

    Miller GA, Chapman JP. Misunderstanding analysis of covariance. J Abnorm Psychol. 2001;110:40–48. PubMed ID: 11261398 doi:10.1037/0021-843X.110.1.40

  • 19.

    van Breukelen GJP. ANCOVA versus change from baseline: more power in randomized studies, more bias in nonrandomized studies corrected. J Clin Epidemiol. 2006;59:920–925. PubMed ID: 16895814 doi:10.1016/j.jclinepi.2006.02.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Bennett S, Ashford D, Elliott D. Intermittent vision and one-handed catching: the temporal limits of binocular and monocular integration. Motor Control. 2003;7:378–387. PubMed ID: 14999135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Fransen J, Lovell TWJ, Bennett KJM, et al. The influence of restricted visual feedback on dribbling performance in youth soccer players. Motor Control. 2017;21:158–167. PubMed ID: 27111662 doi:10.1123/mc.2015-0059

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Wilkins L, Gray R. Effects of stroboscopic visual training on visual attention, motion perception, and catching performance. Percept Mot Skills. 2015;121:57–79. PubMed ID: 26126135 doi:10.2466/22.25.PMS.121c11x0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Pitzalis S, Bozzacchi C, Bultrini A, Fattori P, Galletti C, Di Russo F. Parallel motion signals to the medial and lateral motion areas V6 and MT+. Neuroimage. 2013;67:89–100. PubMed ID: 23186916 doi:10.1016/j.neuroimage.2012.11.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Smith JL, Johnstone SJ, Barry RJ. Effects of pre-stimulus processing on subsequent events in a warned Go/NoGo paradigm: response preparation, execution and inhibition. Int J Psychophysiol. 2006;61:121–133. PubMed ID: 16214250 doi:10.1016/j.ijpsycho.2005.07.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Fort A, Besle J, Giard MH, Pernier J. Task-dependent activation latency in human visual extrastriate cortex. Neurosci Lett. 2005;379:144–148. PubMed ID: 15823432 doi:10.1016/j.neulet.2004.12.076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kawakami O, Kaneoke Y, Maruyama K, et al. Visual detection of motion speed in humans: spatiotemporal analysis by fMRI and MEG. Hum Brain Mapp. 2002;16:104–118. PubMed ID: 11954060 doi:10.1002/hbm.10033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Maruyama K, Kaneoke Y, Watanabe K, Kakigi R. Human cortical responses to coherent and incoherent motion as measured by magnetoencephalography. Neurosci Res. 2002;44:195–205. PubMed ID: 12354634 doi:10.1016/S0168-0102(02)00129-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey matter induced by training. Nature. 2004;427:311–312. PubMed ID: 14737157 doi:10.1038/427311a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Driemeyer J, Boyke J, Gaser C, Büchel C, May A. Changes in gray matter induced by learning--revisited. PLoS ONE. 2008;3:2669. PubMed ID: 18648501 doi:10.1371/journal.pone.0002669

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Boyke J, Driemeyer J, Gaser C, Büchel C, May A. Training-induced brain structure changes in the elderly. J Neurosci. 2008;28:7031–7035. PubMed ID: 18614670 doi:10.1523/JNEUROSCI.0742-08.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hülsdünker T, Struder HK, Mierau A. Neural correlates of expert visuomotor performance in badminton players. Med Sci Sports Exerc. 2016;48:2125–2134. PubMed ID: 27327022 doi:10.1249/MSS.0000000000001010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Vine SJ, Moore LJ, Wilson MR. An integrative framework of stress, attention, and visuomotor performance. Front Psychol. 2016;7:1671. PubMed ID: 27847484 doi:10.3389/fpsyg.2016.01671

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Jakovljevic M. The placebo-nocebo response: controversies and challenges from clinical and research perspective. Eur Neuropsychopharmacol. 2014;24:333–341. PubMed ID: 24393653 doi:10.1016/j.euroneuro.2013.11.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 266 266 55
Full Text Views 26 26 12
PDF Downloads 17 17 12