Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To further the understanding of elite athlete performance in complex race environments by examining the changes in cyclists’ performance between solo time trials and head-to-head racing in match-sprint tournaments. Methods: Analyses were derived from official results of cyclists in 61 elite international sprint tournaments (2000–2016), incorporating the results of 2060 male and 1969 female head-to-head match races. Linear mixed modeling of log-transformed qualification and finish ranks was used to determine estimates of performance predictability as intraclass correlation coefficients. Correlations between qualifying performance and final tournament rank were also calculated. Chances of winning head-to-head races were estimated adjusting for the difference in the cyclists’ qualifying times. All effects were evaluated using magnitude-based inference. Results: Minor differences in predictability between qualification time trial and final tournament rank were suggestive of more competitiveness among men in the overall tournament. Performance in the qualification time trial was strongly correlated with, but not fully indicative of, performance in the overall tournament. Correspondingly, being the faster qualifier had a large positive effect on the chances of winning a head-to-head race, but small substantial differences between riders remained after adjustment for time-trial differentials. Conclusions: The present study provides further insight into how real-world competition data can be used to investigate elite athlete performance in sports where athletes must directly interact with their opponents. For elite match-sprint cyclists, qualifying time-trial performance largely determines success in the overall tournament, but there is evidence of a consistent match-race ability that modifies the chances of winning head-to-head races.

The authors are with the Inst for Health and Sport, Victoria University, Melbourne, VIC, Australia.

Phillips (Kathryn.Phillips@live.vu.edu.au) is corresponding author.
  • 1.

    Burke ER. Serious Cycling. 1st ed. Champaign, IL: Human Kinetics; 2002.

  • 2.

    Ofoghi B, Zeleznikow J, MacMahon C, Raab M. Data mining in elite sports: a review and a framework. Meas Phys Educ Exerc Sci. 2013;17(3):171186. doi:10.1080/1091367X.2013.805137

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Faria EW, Parker DL, Faria IE. The science of cycling: factors affecting performance—part 2. Sports Med. 2005;35(4):313337. PubMed ID: 15831060 doi:10.2165/00007256-200535040-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Dorel S, Hautier CA, Rambaud O, et al. Torque and power–velocity relationships in cycling: relevance to track sprint performance in world-class cyclists. Int J Sports Med. 2005;26(9):739746. PubMed ID: 16237619 doi:10.1055/s-2004-830493

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Martin JC, Gardner AS, Barras M, Martin DT. Modeling sprint cycling using field-derived parameters and forward integration. Med Sci Sports Exerc. 2006;38(3):592597. PubMed ID: 16540850 doi:10.1249/01.mss.0000193560.34022.04

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Konings MJ, Hettinga FJ. Objectifying tactics: athlete and race variability in elite short-track speed skating. Int J Sports Physiol Perform. 2018;13(2):170175. PubMed ID: 28530528 doi:10.1123/ijspp.2016-0779

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Dilger A, Geyer H. The dynamic of bicycle finals: a theoretical and empirical analysis of slipstreaming. IOB Diskussionspapier. 2009;4:115.

    • Search Google Scholar
    • Export Citation
  • 8.

    Jeukendrup AE, Martin J. Improving cycling performance: how should we spend our time and money. Sports Med. 2001;31(7):559569. doi:10.2165/00007256-200131070-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Olds T. The mathematics of breaking away and chasing in cycling. Eur J Appl Physiol Occup Physiol. 1998;77:492497. PubMed ID: 9650732 doi:10.1007/s004210050365

  • 10.

    Muehlbauer T, Schindler C. Relationship between starting and finishing position in short track speed skating races. Eur J Sport Sci. 2011;11(4):225230. doi:10.1080/17461391.2010.499968

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Martin JC, Davidson CJ, Pardyjak ER. Understanding sprint-cycling performance: the integration of muscle power, resistance, and modeling. Int J Sports Physiol Perform. 2007;2:521. PubMed ID: 19255451 doi:10.1123/ijspp.2.1.5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Malcata RM, Hopkins WG. Variability of competitive performance of elite athletes: a systematic review. Sports Med. 2014;44(12):17631774. PubMed ID: 25108349 doi:10.1007/s40279-014-0239-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Phillips KE, Hopkins WG. Performance relationships in timed and mass-start events for elite omnium cyclists. Int J Sports Physiol Perform. 2017;12(5):628633. PubMed ID: 27632247 doi:10.1123/ijspp.2016-0204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hopkins WG. Spreadsheets for analysis of validity and reliability. Sportscience. 2015;19:3642.

  • 16.

    Smith TB, Hopkins WG. Variability and predictability of finals times of elite rowers. Med Sci Sports Exerc. 2011;43(11):21552160. PubMed ID: 21502896 doi:10.1249/MSS.0b013e31821d3f8e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hopkins W. Linear models and effect magnitudes for research, clinical and practical applications. Sportscience. 2010;14:4958.

  • 18.

    Hopkins WG, Batterham AM, Marshall SW, Hanin J. Progressive statistics. Sportscience. 2009;13:5570.

  • 19.

    del Corral J, Prieto-Rodriguez J. Are differences in ranks good predictors for Grand Slam tennis matches? Int J Forecast. 2010;26:551563. doi:10.1016/j.ijforecast.2009.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Bullock N, Hopkins WG. Methods for tracking athletes’ competitive performance in skeleton. J Sports Sci. 2009;27(9):937940. PubMed ID: 19598055 doi:10.1080/02640410902951386

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Paton CD, Hopkins WG. Variation in performance times of elite cyclists from race to race. Eur J Sport Sci. 2006;6(1):2531. doi:10.1080/17461390500422796

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Ma SM, Liu CC, Tan Y, Ma SC. Winning matches in Grand Slam men’s singles: an analysis of player performance-related variables from 1991 to 2008. J Sports Sci. 2013;31(11):11471155. PubMed ID: 23458278 doi:10.1080/02640414.2013.775472

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Schumacher YO, Mroz R, Mueller P, Schmid A, Ruecker G. Success in elite cycling: a prospective and retrospective analysis of race results. J Sports Sci. 2006;24(11):11491156. PubMed ID: 17175613 doi:10.1080/02640410500457299

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Ovaska T, Sumell AJ. Who has the advantage? An economic exploration of winning in men’s professional tennis. Am Econ. 2014;59(1):3451. doi:10.1177/056943451405900104

    • Search Google Scholar
    • Export Citation
  • 25.

    González-Díaz J, Palacios-Huerta I. Cognitive performance in competitive environments: evidence from a natural experiment. J Public Econ. 2016;139:4052. doi:10.1016/j.jpubeco.2016.05.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Beilock SL, Carr TH. On the fragility of skilled performance: what governs choking under pressure? J Exp Psychol Gen. 2001;130(4):701725. PubMed ID: 11757876 doi:10.1037/0096-3445.130.4.701

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Smith DJ. A framework for understanding the training process leading to elite performance. Sports Med. 2003;33(15):11031126. PubMed ID: 14719980 doi:10.2165/00007256-200333150-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Malueg DA, Yates AJ. Testing contest theory: evidence from best-of-three tennis matches. Rev Econ Stat. 2010;92(3):689692. doi:10.1162/REST_a_00021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Weinstein-Gould J. Keeping the hitter off balance: mixed strategies in baseball. J Quant Anal Sport. 2009;5(2):118. doi:10.2202/1559-0410.1173

    • Search Google Scholar
    • Export Citation
  • 30.

    Moffatt J, Scarf P, Passfield L, McHale IG, Zhang K. To lead or not to lead: analysis of the sprint in track cycling. J Quant Anal Sport. 2014;10(2):161172. doi:10.1515/jqas-2013-0112

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 249 177 19
Full Text Views 5 4 0
PDF Downloads 4 4 0