Reducing Aerodynamic Drag by Adopting a Novel Road-Cycling Sprint Position

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To assess the influence of seated, standing, and forward-standing cycling sprint positions on aerodynamic drag (CdA) and the reproducibility of a field test of CdA calculated in these different positions. Methods: A total of 11 recreational male road cyclists rode 250 m in 2 directions at around 25, 32, and 40 km·h−1 and in each of the 3 positions, resulting in a total of 18 efforts per participant. Riding velocity, power output, wind direction and velocity, road gradient, temperature, relative humidity, and barometric pressure were measured and used to calculate CdA using regression analysis. Results: A main effect of position showed that the average CdA of the 2 d was lower for the forward-standing position (0.295 [0.059]) compared with both the seated (0.363 [0.071], P = .018) and standing positions (0.372 [0.077], P = .037). Seated and standing positions did not differ from each other. Although no significant difference was observed in CdA between the 2 test days, a poor between-days reliability was observed. Conclusion: A novel forward-standing cycling sprint position resulted in 23% and 26% reductions in CdA compared with a seated and standing position, respectively. This decrease in CdA could potentially result in an important increase in cycling sprint velocity of 3.9–4.9 km·h−1, although these results should be interpreted with caution because poor reliability of CdA was observed between days.

The authors are with the Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.

Merkes (p.merkes@ecu.edu.au) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Martin JCDavidson CJPardyjak ER. Understanding sprint-cycling performance: the integration of muscle power, resistance, and modeling. Int J Sports Physiol Perform. 2007;2(1):521. PubMed ID: 19255451 doi:10.1123/ijspp.2.1.5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Menaspà PAbbiss CRMartin DT. Performance analysis of a world-class sprinter during cycling grand tours. Int J Sports Physiol Perform. 2013;8(3):336340. doi:10.1123/ijspp.8.3.336

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Menaspà PMartin DTVictor JAbbiss CR. Maximal sprint power in road cyclists after variable and non-variable high-intensity exercise. J Strength Cond Res. 2015;29(11):31563161. doi:10.1519/JSC.0000000000000972

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Menaspà PQuod MMartin DTPeiffer JJAbbiss CR. Physical demands of sprinting in professional road cycling. Int J Sports Med. 2015;36(13):10581062. doi:10.1055/s-0035-1554697

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Menaspà PQuod MMartin DTVictor JAbbiss CR. Physiological demands of road sprinting in professional and U23 cycling. A pilot study. J Sci Cycling. 2013;2(2):3539.

    • Search Google Scholar
    • Export Citation
  • 6.

    Martin JCGardner ASBarras MMartin DT. Modeling sprint cycling using field-derived parameters and forward integration. Med Sci Sports Exerc. 2006;38(3):592597. PubMed ID: 16540850 doi:10.1249/01.mss.0000193560.34022.04

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    di Prampero PECortili GMognoni PSaibene F. Equation of motion of a cyclist. J Appl Physiol Respir Environ Exerc Physiol. 1979;47(1):201206. PubMed ID: 468661

    • Search Google Scholar
    • Export Citation
  • 8.

    Underwood LSchumacher JBurette-Pommay JJermy M. Aerodynamic drag and biomechanical power of a track cyclist as a function of shoulder and torso angles. Sports Eng. 2011;14(2–4):147154. doi:10.1007/s12283-011-0078-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Barry NBurton DSheridan JThompson MCBrown N. Aerodynamic performance and riding posture in road cycling and triathlon. Proc Inst Mech Eng Part P J Sports Eng Technol. 2015;229(1):2838. doi:10.1177/1754337114549876

    • Search Google Scholar
    • Export Citation
  • 10.

    García-López JRodríguez-Marroyo JAJuneau CEPeleteiro JMartínez ACVilla JG. Reference values and improvement of aerodynamic drag in professional cyclists. J Sports Sci. 2008;26(3):277286. doi:10.1080/02640410701501697

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Fintelman DMSterling MHemida HLi FX. The effect of time trial cycling position on physiological and aerodynamic variables. J Sports Sci. 2015;33(16):17301737. PubMed ID: 25658151 doi:10.1080/02640414.2015.1009936

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Barry NBurton DSheridan JThompson MBrown NAT. Aerodynamic drag interactions between cyclists in a team pursuit. Sports Eng. 2015;18(2):93103. doi:10.1007/s12283-015-0172-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    De Pauw KRoelands BCheung SSDe Geus BRietjens GMeeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Martin JCMilliken DLCobb JEMcFadden KLCoggan AR. Validation of a mathematical model for road cycling power. J Appl Biomech. 1998;14(3):276291. PubMed ID: 28121252 doi:10.1123/jab.14.3.276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Maier TSchmid LMüller BSteiner TWehrlin JP. Accuracy of cycling power meters against a mathematical model of treadmill cycling. Int J Sports Med. 2017;38(6):456461. PubMed ID: 28482367 doi:10.1055/s-0043-102945

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Jones FE. The air density equation and the transfer of the mass unit. J Res Natl Bur Stand. 1978;83(5):419428. doi:10.6028/jres.083.028

  • 17.

    Martin JCGardner ASBarras MMartin DT. Aerodynamic drag area of cyclists determined with field-based measures. Sportscience. 2006;10:6869.

    • Search Google Scholar
    • Export Citation
  • 18.

    Hopkins WG. Spreadsheets for analysis of validity and reliability. Sportscience. 2015;19(7):3642.

  • 19.

    Hopkins WGSchabort EJHawley JA. Reliability of power in physical performance tests. Sports Med. 2001;31(3):211234. PubMed ID: 11286357 doi:10.2165/00007256-200131030-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Jeukendrup ASaris WHBrouns FKester AD. A new validated endurance performance test. Med Sci Sports Exerc. 1996;28(2):266270. PubMed ID: 8775164 doi:10.1097/00005768-199602000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bassett DR Jr.Kyle CRPassfield LBroker JPBurke ER. Comparing cycling world hour records, 1967-1996: modeling with empirical data. Med Sci Sports Exerc. 1999;31(11):16651676. PubMed ID: 10589872 doi:10.1097/00005768-199911000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bertucci WTaiar RToshev YLetellier T. Comparison of biomechanical criteria in cycling maximal effort test. Int J Sports Sci Eng. 2008;2(1):3346.

    • Search Google Scholar
    • Export Citation
  • 23.

    Reiser RF 2ndMaines JMEisenmann JCWilkinson JG. Standing and seated Wingate protocols in human cycling. A comparison of standard parameters. Eur J Appl Physiol. 2002;88(1–2):152157. doi:10.1007/s00421-002-0694-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Vrbik ISporiš GŠtefan Let al. The influence of familiarization on physical fitness test results in primary school-aged children. Pediatr Exerc Sci. 2017;29(2):278284. PubMed ID: 27768554 doi:10.1123/pes.2016-0091

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Amarante do Nascimento MJanuário RSGerage AMMayhew JLCheche Pina FLCyrino ES. Familiarization and reliability of one repetition maximum strength testing in older women. J Strength Cond Res. 2013;27(6):16361642. PubMed ID: 22990569 doi:10.1519/JSC.0b013e3182717318

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Hopker JGColeman DAWiles JDGalbraith A. Familiarisation and reliability of sprint test indices during laboratory and field assessment. J Sports Sci Med. 2009;8(4):528532. PubMed ID: 24149593

    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 88 88 24
Full Text Views 17 17 4
PDF Downloads 9 9 2
Altmetric Badge
PubMed
Google Scholar