Exploring the Efficacy of a Safe Cryotherapy Alternative: Physiological Temperature Changes From Cold-Water Immersion Versus Prolonged Cooling of Phase-Change Material

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To evaluate the effectiveness between cold-water immersion (CWI) and phase-change-material (PCM) cooling on intramuscular, core, and skin-temperature and cardiovascular responses. Methods: In a randomized, crossover design, 11 men completed 15 min of 15°C CWI to the umbilicus and 2-h recovery or 3 h of 15°C PCM covering the quadriceps and 1 h of recovery, separated by 24 h. Vastus lateralis intramuscular temperature at 1 and 3 cm, core and skin temperature, heart-rate variability, and thermal comfort were recorded at baseline and 15-min intervals throughout treatment and recovery. Results: Intramuscular temperature decreased (P < .001) during and after both treatments. A faster initial effect was observed from 15 min of CWI (Δ: 4.3°C [1.7°C] 1 cm; 5.5°C [2.1°C] 3 cm; P = .01). However, over time (2 h 15 min), greater effects were observed from prolonged PCM treatment (Δ: 4.2°C [1.9°C] 1 cm; 2.2°C [2.2°C] 3 cm; treatment × time, P = .0001). During the first hour of recovery from both treatments, intramuscular temperature was higher from CWI at 1 cm (P = .013) but not 3 cm. Core temperature deceased 0.25° (0.32°) from CWI (P = .001) and 0.28°C (0.27°C) from PCM (P = .0001), whereas heart-rate variability increased during both treatments (P = .001), with no differences between treatments. Conclusions: The magnitude of temperature reduction from CWI was comparable with PCM, but intramuscular temperature was decreased for longer during PCM. PCM cooling packs offer an alternative for delivering prolonged cooling whenever application of CWI is impractical while also exerting a central effect on core temperature and heart rate.

Kwiecien and McHugh are with the Nicholas Inst of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY. Kwiecien, McHugh, Goodall, Hicks, and Howatson are with the Dept of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom. Hunter is with the Physiology, Exercise and Nutrition Research Group, University of Stirling, Scotland, United Kingdom. Howatson is with the Water Research Group, North West University, Potchefstroom, South Africa.

Kwiecien (susan@nismat.org) is corresponding author.
  • 1.

    Bleakley CM, McDonough S, Gardner E, Baxter GD, Hopkins JT, Davison GW. Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. Cochrane Database Syst Rev. 2012;15:CD008262.

    • Search Google Scholar
    • Export Citation
  • 2.

    Leeder J, Gissane C, van Someren KA, Gregson W, Howatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012;46:233–240. PubMed ID: 21947816 doi:10.1136/bjsports-2011-090061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Howatson G, Leeder K, van Someren K. The BASES expert statement on athletic recovery strategies. Sport Exerc Sci. 2016;48. http://www.bases.org.uk/The-BASES-Expert-Statement-on-Athletic-Recovery-Strategies. Accessed March 5, 2017.

    • Search Google Scholar
    • Export Citation
  • 4.

    Nadler SF, Prybicien M, Malanga GA, Sicher D. Complications from therapeutic modalities: results of a national survey of athletic trainers. Arch Phys Med Rehabil. 2003;84:849–853. PubMed ID: 12808537 doi:10.1016/S0003-9993(02)04955-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Pritchard KA, Saliba SA. Should athletes return to activity after cryotherapy? J Athl Train. 2014;49:95–96. PubMed ID: 23724775 doi:10.4085/1062-6050-48.3.13

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Stephens JM, Sharpe K, Gore C, et al. Core temperature responses to cold-water immersion recovery: a pooled-data analysis. Int J Sports Physiol Perform. 2018;13:917–925. PubMed ID: 29283744 doi:10.1123/ijspp.2017-0661

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kwiecien SY, McHugh MP, Howatson G. The efficacy of cooling with phase change material for the treatment of exercise-induced muscle damage: pilot study. J Sports Sci. 2018;36:407–413. PubMed ID: 28391765

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Clifford T, Abbott W, Kwiecien SY, Howatson G, McHugh MP. Cryotherapy reinvented: application of phase change material for recovery in elite soccer. Int J Sports Physiol Perform. 2018;13(5):584–589. PubMed ID: 28872368 doi:10.1123/ijspp.2017-0334

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Roberts LA, Muthalib M, Stanley J, et al. Effects of cold water immersion and active recovery on hemodynamics and recovery of muscle strength following resistance exercise. Am J Physiol Regul Integr Comp Physiol. 2015;309:R389–R398. PubMed ID: 26062633 doi:10.1152/ajpregu.00151.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Roberts LA, Nosaka K, Coombes JS, Peake JM. Cold water immersion enhances recovery of submaximal muscle function after resistance exercise. Am J Physiol Regul Integr Comp Physiol. 2014;307:R998–R1008. PubMed ID: 25121612 doi:10.1152/ajpregu.00180.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Mawhinney C, Jones H, Low DA, Green DJ, Howatson G, Gregson W. Influence of cold-water immersion on limb blood flow after resistance exercise. Eur J Sport Sci. 2017;17:519–529. PubMed ID: 28100130 doi:10.1080/17461391.2017.1279222

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mawhinney C, Low DA, Jones H, Green DJ, Costello JT, Gregson W. Cold water mediates greater reductions in limb blood flow than whole body cryotherapy. Med Sci Sports Exerc. 2017;49:1252–1260. PubMed ID: 28141620 doi:10.1249/MSS.0000000000001223

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Costello JT, Culligan K, Selfe J, Donnelly AE. Muscle, skin and core temperature after −110°C cold air and 8°C water treatment. PLoS ONE. 2012;7:e48190. PubMed ID: 23139763 doi:10.1371/journal.pone.0048190

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Gregson W, Black MA, Jones H, et al. Influence of cold water immersion on limb and cutaneous blood flow at rest. Am J Sports Med. 2011;39:1316–1323. PubMed ID: 21335348 doi:10.1177/0363546510395497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Al Haddad H, Laursen PB, Chollet D, Lemaitre F, Ahmaidi S, Buchheit M. Effect of cold or thermoneutral water immersion on post-exercise heart rate recovery and heart rate variability indices. Auton Neurosci. 2010;156:111–116. PubMed ID: 20403733 doi:10.1016/j.autneu.2010.03.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Almeida AC, Machado AF, Albuquerque MC, et al. The effects of cold water immersion with different dosages (duration and temperature variations) on heart rate variability post-exercise recovery: a randomized controlled trial. J Sci Med Sport. 2016;19:676–681. PubMed ID: 26614422 doi:10.1016/j.jsams.2015.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bastos FN, Vanderlei LC, Nakamura FY, et al. Effects of cold water immersion and active recovery on post-exercise heart rate variability. Int J Sports Med. 2012;33:873–879. PubMed ID: 22722961 doi:10.1055/s-0032-1301905

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    White GE, Wells GD. Cold-water immersion and other forms of cryotherapy: physiological changes potentially affecting recovery from high-intensity exercise. Extreme Physiol Med. 2013;2:26. PubMed ID: 24004719 doi:10.1186/2046-7648-2-26

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Al Haddad H, Laursen PB, Chollet D, Ahmaidi S, Buchheit M. Reliability of resting and postexercise heart rate measures. Int J Sports Med. 2011;32:598–605. PubMed ID: 21574126 doi:10.1055/s-0031-1275356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Davey S, Reilly T, Newton M, Tipton M. The reproducibility and validity of visual analogue scales (VAS) that assess thermal perceptions in stable and dynamic, asymmetric environments. In: Proceedings of the 12th International Conference of Environmental Ergonomics; August 2–7, 2009, Boston, MA. 2007;19–24.

    • Export Citation
  • 21.

    Armstrong RB, Warren GL, Warren JA. Mechanisms of exercise-induced muscle fibre injury. Sports Med. 1991;12:184–207. PubMed ID: 1784873 doi:10.2165/00007256-199112030-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Schaser KD, Disch AC, Stover JF, Lauffer A, Bail HJ, Mittlmeier T. Prolonged superficial local cryotherapy attenuates microcirculatory impairment, regional inflammation, and muscle necrosis after closed soft tissue injury in rats. Am J Sports Med. 2007;35:93–102. PubMed ID: 17197574 doi:10.1177/0363546506294569

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ottone VO, Magalhães FC, Paula F, et al. The effect of different water immersion temperatures on post exercise parasympathetic reactivation. PLoS ONE. 2014;9:e113730. doi:10.1371/journal.pone.0113730

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Dong J. The role of heart rate variability in sports physiology (review). Exp Ther Med. 2016;11:1531–1536. PubMed ID: 27168768 doi:10.3892/etm.2016.3104

  • 25.

    Stephens JM, Halson SL, Miller J, Slater GJ, Askew CD. Influence of body composition on physiological responses to post-exercise hydrotherapy. J Sports Sci. 2018;36:1044–1053. PubMed ID: 28703035 doi:10.1080/02640414.2017.1355062

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Johnson DJ, Moore S, Moore J, Oliver RA. Effect of cold submersion on intramuscular temperature of the gastrocnemius muscle. Phys Ther. 1979;59:1238–1242. PubMed ID: 493345 doi:10.1093/ptj/59.10.1238

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Oliver RA, Johnson DJ. The effect of cold water baths on post treatment leg strength. Phys Sport Med. 1976;4:67–69.

  • 28.

    Myrer WJ, Myrer KA, Measom GJ, Fellingham GW, Evers SL. Muscle temperature is affected by overlying adipose when cryotherapy is administered. J Athl Train. 2001;36:32–36. PubMed ID: 12937512

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Otte JW, Merrick MA, Ingersoll CD, Cordova ML. Subcutaneous adipose tissue thickness alters cooling time during cryotherapy. Arch Phys Med Rehabil. 2002;83:1501–1505. PubMed ID: 12422316 doi:10.1053/apmr.2002.34833

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Stephens JM, Halson S, Miller J, Slater GJ, Askew CD. Cold-water immersion for athletic recovery: one size does not fit all. Int J Sports Physiol Perform. 2017;12:2–9. PubMed ID: 27294485 doi:10.1123/ijspp.2016-0095

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Vargas NT, Chapman CL, Sackett JR, Johnson BD, Gathercole R, Schlader ZJ. Thermal behavior differs between males and females during exercise and recovery. Med Sci Sports Exerc. 2019;51:141–152. PubMed ID: 30095750

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Kaciuba-Uscilko H, Grucza R. Gender differences in thermoregulation. Curr Opin Clin Nutr Metab Care. 2001;4:533–536. PubMed ID: 11706289 doi:10.1097/00075197-200111000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 134 134 46
Full Text Views 23 23 8
PDF Downloads 10 10 2