The Back Squat and the Power Clean: Elicitation of Different Degrees of Potentiation

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $114.00

1 year online subscription

USD  $152.00

Student 2 year online subscription

USD  $217.00

2 year online subscription

USD  $289.00


To compare the acute effects of back squats and power cleans on sprint performance.


Thirteen elite junior rugby league players performed 20-m linear sprints before and 7 min after 2 different conditioning activities or 1 control condition. The conditioning activities included 1 set of 3 back squats or power cleans at 90% 1-repetition maximum. A 2 × 2 repeated-measures ANOVA was used to compare preconditioning and postconditioning changes in sprint performance.


Both the back-squat and power-clean conditioning activities demonstrated a potentiation effect as indicated by improved sprint time (back squat: P = .001, ES = –0.66; power cleans: P = .001, ES = –0.92), velocity (back squat: P = .001, ES = 0.63; power cleans: P = .001, ES = 0.84), and average acceleration over 20 m (back squat: P = .001, ES = 0.70; power cleans: P = .001, ES = 1.00). No potentiation effect was observed after the control condition. Overall, the power clean induced a greater improvement in sprint time (P = .042, ES = 0.83), velocity (P = .047, ES = 1.17), and average acceleration (P = .05, ES = 0.87) than the back squat.


Back-squat and power-clean conditioning activities both induced improvements in sprint performance when included as part of a potentiation protocol. However, the magnitude of improvement was greater after the power cleans. From a practical perspective, strength and conditioning coaches should consider using power cleans rather than back squats to maximize the performance effects of potentiation complexes targeting the development of sprint performance.

The authors are with the Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, WA, Australia. Address author correspondence to Laurent Seitz at