Changes of Power Output and Velocity During Successive Sets of the Bench Press With Different Duration of Eccentric Movement

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: Resistance training is one of the key components influencing power output. Previous studies directed at power development through the use of postactivation potentiation have analyzed resistance exercises at volitional or fast tempo of movement in the entire cycle, without control of the duration of the concentric and eccentric phases of movement. To date, no scientific studies have explored the effects of varied movement tempo on the level of power output, velocity, and postactivation potentiation efficiency. Methods: During the experimental sessions, study participants performed 3 sets (Sets1–3) of the bench-press exercise using 70% 1-repetition maximum and 2 different tempos of movement: 2/0/X/0 eccentric medium tempo (ECCMED) and 6/0/X/0 eccentric slow tempo (ECCSLO). Results: Post hoc analysis demonstrated significant differences in values of peak (P PEAK) and mean (P MEAN) power between Sets1–3 measured for the ECCMED (2/0/X/0) tempo. The values of P MEAN in Set3 (492.15 [87.61] W) were significantly higher than in Set2 (480.05 [82.10] W) and Set1 (467.65 [79.18] W). Similarly, the results of P PEAK in Set3 (713.10 [132.72] W) were significantly higher than those obtained in Set2 (702.25 [129.5] W) and Set1 (671.55 [115.79] W). For the ECCSLO tempo (6/0/X/0) in Set2 (587.9 [138.48] W), the results of P PEAK were significantly higher than in Set1 (565.7 [117.37] W) and Set3 (563.1 [124.93] W). Conclusions: The results of this study indicate that the postactivation potentiation effect is observed for both slow and medium tempos of movement.

The authors are with the Dept of Sports Training, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland.

Wilk (m.wilk@awf.katowice.pl) is corresponding author.
  • 1.

    Argus CK, Gill ND, Keogh JW, Hopkins WG. Assessing the variation in the load that produces maximal upper-body power. J Strength Cond Res. 2014;28(1):240–244. PubMed ID: 23591943 doi:10.1519/JSC.0b013e318295d1c9

    • Search Google Scholar
    • Export Citation
  • 2.

    Marques MC, van den Tilaar R, Vescovi JD, Gonzalez-Badillo JJ. Relationship between throwing velocity, muscle power, and bar velocity during bench press in elite handball players. Int J Sports Physiol Perform. 2007;2(4):414–422. PubMed ID: 19171959 doi:10.1123/ijspp.2.4.414

    • Search Google Scholar
    • Export Citation
  • 3.

    Jandacka D, Uchytil J. Optimal load maximizes the mean mechanical power output during upper extremity exercise in highly trained soccer players. J Strength Cond Res. 2011;25(10):2764–2772. PubMed ID: 21912283 doi:10.1519/JSC.0b013e31820dbc6d

    • Search Google Scholar
    • Export Citation
  • 4.

    Baker DG, Newton RU. Adaptations in upper-body maximal strength and power output resulting from long-term resistance training in experienced strength-power athletes. J Strength Cond Res. 2006;20(3):541–546. PubMed ID: 16937966

    • Search Google Scholar
    • Export Citation
  • 5.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 2—training considerations for improving maximal power production. Sports Med. 2011;41(2):125–146. PubMed ID: 21244105 doi:10.2165/11538500-000000000-00000

    • Search Google Scholar
    • Export Citation
  • 6.

    Golas A, Wilk M, Statsny P, Maszczyk A, Pajerska K, Zajac A. Optimizing half squat postactivation potential load in squat jump training for eliciting relative maximal power in ski jumpers. J Strength Cond Res. 2017;31:3010–3017. PubMed ID: 29065077 doi:10.1519/JSC.0000000000001917

    • Search Google Scholar
    • Export Citation
  • 7.

    Lowery RP, Duncan NM, Loenneke JP, et al. The effects of potentiating stimuli intensity under varying rest periods on vertical jump performance and power. J Strength Cond Res. 2012;26(12):3320–3325. PubMed ID: 23007485 doi:10.1519/JSC.0b013e318270fc56

    • Search Google Scholar
    • Export Citation
  • 8.

    Docherty D, Hodgson MJ. The application of postactivation potentiation to elite sport. Int J Sports Physiol Perform. 2007;2(4):439–444. PubMed ID: 19171961 doi:10.1123/ijspp.2.4.439

    • Search Google Scholar
    • Export Citation
  • 9.

    Esformes JI, Bampouras TM. Effect of back squat depth on lower-body postactivation potentiation. J Strength Cond Res. 2013;27(11):2997–3000. PubMed ID: 23442291 doi:10.1519/JSC.0b013e31828d4465

    • Search Google Scholar
    • Export Citation
  • 10.

    Salamon J. A comparative analysis of men’s team and individual large hill (K-125) ski jumping competitions at the 2014 Winter Olympic Games in Sochi. Trends Sport Sci. 2014;21(4):229–232.

    • Search Google Scholar
    • Export Citation
  • 11.

    Tillin NA, Bishop D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009;39(2):147–166. PubMed ID: 19203135 doi:10.2165/00007256-200939020-00004

    • Search Google Scholar
    • Export Citation
  • 12.

    Golas A, Maszczyk A, Zajac A, Mikolajec K, Statsny P. Optimizing post activation potentiation for explosive activities in competitive sports. J Hum Kinet. 2016;52:95–106. PubMed ID: 28149397 doi:10.1515/hukin-2015-0197

    • Search Google Scholar
    • Export Citation
  • 13.

    Wilson JM, Duncan NM, Marin PJ, et al. Meta-analysis of postactivation potentiation and power: effects of conditioning activity, volume, gender, rest periods, and training status. J Strength Cond Res. 2013;27(3):854–859. PubMed ID: 22580978 doi:10.1519/JSC.0b013e31825c2bdb

    • Search Google Scholar
    • Export Citation
  • 14.

    Sale DG. Postactivation potentiation: role in human performance. Exerc Sport Sci Rev. 2002;30(3):138–143. PubMed ID: 12150573 doi:10.1097/00003677-200207000-00008

    • Search Google Scholar
    • Export Citation
  • 15.

    Gossen ER, Sale DG. Effect of postactivation potentiation on dynamic knee extension performance. Eur J Appl Physiol. 2000;83(6):524–530. PubMed ID: 11192060 doi:10.1007/s004210000304

    • Search Google Scholar
    • Export Citation
  • 16.

    McMaster DT, Gill N, Cronin J, McGuigan M. A brief review of strength and ballistic assessment methodologies in sport. Sports Med. 2014;44(5):603–623. PubMed ID: 24497158 doi:10.1007/s40279-014-0145-2

    • Search Google Scholar
    • Export Citation
  • 17.

    Baudry S, Duchateau J. Postactivation potentiation in human muscle is not related to the type of maximal conditioning contraction. Muscle Nerve. 2004;30(3):328–336. PubMed ID: 15318344 doi:10.1002/mus.20101

    • Search Google Scholar
    • Export Citation
  • 18.

    Pääsuke M, Saapar L, Ereline J, Gapeyeva H, Requena B, Oöpik V. Postactivation potentiation of knee extensor muscles in power- and endurance-trained, and untrained women. Eur J Appl Physiol. 2007;101(5):577–585. PubMed ID: 17674025 doi:10.1007/s00421-007-0532-6

    • Search Google Scholar
    • Export Citation
  • 19.

    Headley SA, Henry K, Nindl BC, Thompson BA, Kraemer WJ, Jones MT. Effects of lifting tempo on one repetition maximum and hormonal responses to a bench press protocol. J Strength Cond Res. 2011;25(2):406–413. PubMed ID: 20351575 doi:10.1519/JSC.0b013e3181bf053b

    • Search Google Scholar
    • Export Citation
  • 20.

    Wilk M, Statsny P, Nawrocka M, Krzysztofik M, Zajac A. Does tempo of resistance exercise impact training volume? J Hum Kinet. 2018;62:241–250. PubMed ID: 29922395 doi:10.2478/hukin-2018-0034

    • Search Google Scholar
    • Export Citation
  • 21.

    Bird SP, Tarpenning KM, Marino FE. Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med. 2015;35(10):841–851. doi:10.2165/00007256-200535100-00002

    • Search Google Scholar
    • Export Citation
  • 22.

    Tanimoto M, Ishii N. Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J Appl Physiol. 2006;100(4):1150–1157. doi:10.1152/japplphysiol.00741.2005

    • Search Google Scholar
    • Export Citation
  • 23.

    Tanimoto M, Sanada K, Yamamoto K, et al. Effects of whole-body low-intensity resistance training with slow movement and tonic force generation on muscular size and strength in young men. J Strength Cond Res. 2008;22(6):1926–1938. PubMed ID: 18978616 doi:10.1519/JSC.0b013e318185f2b0

    • Search Google Scholar
    • Export Citation
  • 24.

    Morrissey MC, Harman EA, Frykman PN, Han KH. Early phase differential effects of slow and fast barbell squat training. Am J Sports Med. 1998;26(2):221–230. PubMed ID: 9548115 doi:10.1177/03635465980260021101

    • Search Google Scholar
    • Export Citation
  • 25.

    Chaouachi A, Poulos N, Abed F, et al. Volume, intensity, and timing of muscle power potentiation are variable. Appl Physiol Nutr Metab. 2011;36(5):736–747. PubMed ID: 21999296 doi:10.1139/h11-079

    • Search Google Scholar
    • Export Citation
  • 26.

    Wilcox J, Larson R, Brochu KM, Faigenbaum AD. Acute explosive-force movements enhance bench-press performance in athletic men. Int J Sports Physiol Perform. 2006;1(3):261–269. PubMed ID: 19116439 doi:10.1123/ijspp.1.3.261

    • Search Google Scholar
    • Export Citation
  • 27.

    Sevilmiş E, Atalağ O. Effects of post activation potentiation on eccentric loading: is it possible to do more repetitions after supra-maximal loading? J Hum Sport Exerci. 2019;14(3):584–590. doi:10.14198/jhse.2019.143.09

    • Search Google Scholar
    • Export Citation
  • 28.

    Feros SA, Young WB, Rice AJ, Talpey SW. The effect of including a series of isometric conditioning contractions to the rowing warm-up on 1,000-m rowing ergometer time trial performance. J Strength Cond Res. 2012;26(12):3326–3334. PubMed ID: 22266645 doi:10.1519/JSC.0b013e3182495025

    • Search Google Scholar
    • Export Citation
  • 29.

    Silva RA, Silva-Junior FL, Pinheiro FA, Souza PF, Boullosa DA, Pires FO. Acute prior heavy strength exercise bouts improve the 20-km cycling time trial performance. J Strength Cond Res. 2014;28(9):2513–2520. PubMed ID: 24584047 doi:10.1519/JSC.0000000000000442

    • Search Google Scholar
    • Export Citation
  • 30.

    Sakamoto A, Sinclair P. Effect of movement velocity on the relationship between training load and the number of repetitions of bench press. J Strength Cond Res. 2006;20(3):523–527. PubMed ID: 16937964

    • Search Google Scholar
    • Export Citation
  • 31.

    Seo DI, Kim E, Fahs CA, et al. Reliability of the one-repetition maximum test based on muscle group and gender. J Sports Sci Med. 2012;11(2):221–225. PubMed ID: 24149193

    • Search Google Scholar
    • Export Citation
  • 32.

    Goldsmith JA, Trepeck C, Halle JL, et al. Validity of the Open Barbell and Tendo Weightlifting Analyzer Systems versus the Optotrak Certus 3D motion-capture system for barbell velocity. Int J Sports Physiol Perform. 2019;14(4):540–543. doi:10.1123/ijspp.2018-0684

    • Search Google Scholar
    • Export Citation
  • 33.

    Morales-Artacho AJ, Padial P, García-Ramos A, Feriche B. The effect of the number of sets on power output for different loads. J Hum Kinet. 2015;46:149–156. PubMed ID: 26240658 doi:10.1515/hukin-2015-0043

    • Search Google Scholar
    • Export Citation
  • 34.

    Ferreira SL, Panissa VL, Miarka B, Franchini E. Postactivation potentiation: effect of various recovery intervals on bench press power performance. J Strength Cond Res. 2012;26(3):739–744. PubMed ID: 22297412 doi:10.1519/JSC.0b013e318225f371

    • Search Google Scholar
    • Export Citation
  • 35.

    Keogh J, Wilson WL, Weatherby RP. A cross-sectional comparison of different resistance training techniques in the bench press. J Strength Cond Res. 1999;13(3):247.

    • Search Google Scholar
    • Export Citation
  • 36.

    Malisoux L, Francaux M, Nielens H, Theisen D. Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J Appl Physiol. 2006;100:771–779. PubMed ID: 16322375 doi:10.1152/japplphysiol.01027.2005

    • Search Google Scholar
    • Export Citation
  • 37.

    Wilk M, Krzysztofik M, Maszczyk A, Chycki J, Zajac A. The acute effects of caffeine intake on time under tension and power generated during the bench press movement. J Int Soc Sports Nutr. 2019;16(1):8. doi:10.1186/s12970-019-0275-x

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 69 69 45
Full Text Views 23 23 15
PDF Downloads 15 15 6