Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To explore the effects of 3 doses of caffeine on muscle strength and muscle endurance. Methods: Twenty-eight resistance-trained men completed the testing sessions under 5 conditions: no-placebo control, placebo control, and with caffeine doses of 2, 4, and 6 mg·kg−1. Muscle strength was assessed using the 1-repetition-maximum test; muscle endurance was assessed by having the participants perform a maximal number of repetitions with 60% 1-repetition maximum. Results: In comparison with both control conditions, only a caffeine dose of 2 mg·kg−1 enhanced lower-body strength (d = 0.13–0.15). In comparison with the no-placebo control condition, caffeine doses of 4 and 6 mg·kg−1 enhanced upper-body strength (d = 0.07–0.09) with a significant linear trend for the effectiveness of different doses of caffeine (P = .020). Compared with both control conditions, all 3 caffeine doses enhanced lower-body muscle endurance (d = 0.46–0.68). For upper-body muscle endurance, this study did not find significant effects of caffeine. Conclusions: This study revealed a linear trend between the dose of caffeine and its effects on upper-body strength. The study found no clear association between the dose of caffeine and the magnitude of its ergogenic effects on lower-body strength and muscle endurance. From a practical standpoint, the magnitude of caffeine’s effects on strength is of questionable relevance. A low dose of caffeine (2 mg·kg−1)—for an 80-kg individual, the dose of caffeine in 1–2 cups of coffee—may produce substantial improvements in lower-body muscle endurance with the magnitude of the effect being similar to that attained using higher doses of caffeine.

Grgic, Bishop, and Pedisic are with the Inst for Health and Sport, Victoria University, Melbourne, Australia. Sabol is with Fitness Academy, Zagreb, Croatia. Sabol, Venier, I. Mikulic, and P. Mikulic are with the Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia. Bratkovic is with Nutri Klinika, Zagreb, Croatia. Schoenfeld is with the Dept. of Health Sciences, Lehman College, Bronx, NY. Pickering is with the School of Sport and Wellbeing, Inst of Coaching and Performance, University of Central Lancashire, Preston, United Kingdom. Bishop is also with the School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.

Grgic (jozo.grgic@live.vu.edu.au) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31:785807. PubMed ID: 11583104 doi:

  • 2.

    Van Thuyne WDelbeke FT. Distribution of caffeine levels in urine in different sports in relation to doping control before and after the removal of caffeine from the WADA doping list. Int J Sports Med. 2006;27:745750. PubMed ID: 16586337 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Maughan RJBurke LMDvorak Jet al. IOC consensus statement: dietary supplements and the high-performance athlete. Br J Sports Med. 2018;52:439455. PubMed ID: 29540367 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Grgic JGrgic IPickering CSchoenfeld BJBishop DJPedisic Z. Wake up and smell the coffee: caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses [published online ahead of print March 29 2019]. Br J Sports Med. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Pickering CGrgic J. Caffeine and exercise: what next? Sports Med. 2019;49:10071030. PubMed ID: 30977054 doi:

  • 6.

    Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44:175184. doi:

  • 7.

    Grgic JMikulic PSchoenfeld BJBishop DJPedisic Z. The influence of caffeine supplementation on resistance exercise: a review. Sports Med. 2019;49:1730. PubMed ID: 30298476 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Grgic JTrexler ETLazinica BPedisic Z. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nutr. 2018;15:11. PubMed ID: 29527137 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Arazi HHoseinihaji MEghbali E. The effects of different doses of caffeine on performance, rating of perceived exertion and pain perception in teenagers female karate athletes. Braz J Pharm Sci. 2016;52:685692. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Polito MDSouza DBCasonatto JFarinatti P. Acute effect of caffeine consumption on isotonic muscular strength and endurance: a systematic review and meta-analysis. Sci Sports. 2016;31:119128. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Grgic JMikulic P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur J Sport Sci. 2017;17:10291036. PubMed ID: 28537195 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bühler ELachenmeier DWSchlegel KWinkler G. Development of a tool to assess the caffeine intake among teenagers and young adults. Ernahrungs Umschau. 2014;61:5863.

    • Search Google Scholar
    • Export Citation
  • 13.

    Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2:9298. PubMed ID: 5523831

  • 14.

    Cook DBO’Connor PJOliver SELee Y. Sex differences in naturally occurring leg muscle pain and exertion during maximal cycle ergometry. Int J Neurosci. 1998;95:183202. PubMed ID: 9777439 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Saunders Bde Oliveira LFda Silva RPet al. Placebo in sports nutrition: a proof-of-principle study involving caffeine supplementation. Scand J Med Sci Sports. 2017;27:12401247. PubMed ID: 27882605 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bjørnsen TWernbom MKirketeig Aet al. Type 1 muscle fiber hypertrophy after blood flow-restricted training in powerlifters. Med Sci Sports Exerc. 2019;51:288298. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Mattocks KTBuckner SLJessee MBDankel SJMouser JGLoenneke JP. Practicing the test produces strength equivalent to higher volume training. Med Sci Sports Exerc. 2017;49:19451954. PubMed ID: 28463902 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Schoenfeld BJPope ZKBenik FMet al. Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. J Strength Cond Res. 2016;30:18051812. PubMed ID: 26605807 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Warren GLPark NDMaresca RDMcKibans KIMillard-Stafford ML. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. 2010;42:13751387. PubMed ID: 20019636 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Black CDWaddell DEGonglach AR. Caffeine’s ergogenic effects on cycling: neuromuscular and perceptual factors. Med Sci Sports Exerc. 2015;47:11451158. PubMed ID: 25211364 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Grgic JPickering C. The effects of caffeine ingestion on isokinetic muscular strength: a meta-analysis. J Sci Med Sport. 2019;22:353360. PubMed ID: 30217692 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Shield AZhou S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med. 2004;34:253267. PubMed ID: 15049717 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Gandevia SCMcKenzie DK. Activation of human muscles at short muscle lengths during maximal static efforts. J Physiol. 1988;407:599613. PubMed ID: 3256627 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Polito MDGrandolfi KDe Souza DB. Caffeine and resistance exercise: the effects of two caffeine doses and the influence of individual perception of caffeine  [published online ahead of print April 6 2019]. Eur J Sport Sci. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Pethick JWinter SLBurnley M. Caffeine ingestion attenuates fatigue-induced loss of muscle torque complexity. Med Sci Sports Exerc. 2018;50:236245. PubMed ID: 28991045 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Bazzucchi IFelici FMontini MFigura FSacchetti M. Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve. 2011;43:839844. PubMed ID: 21488053 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Evans MTierney PGray NHawe GMacken MEgan B. Acute ingestion of caffeinated chewing gum improves repeated sprint performance of team sport athletes with low habitual caffeine consumption. Int J Sport Nutr Exerc Metab. 2018;28:221227. PubMed ID: 29091470 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lara BRuiz-Moreno CSalinero JJDel Coso J. Time course of tolerance to the performance benefits of caffeine. PLoS ONE. 2019;14:e0210275. PubMed ID: 30673725 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gonçalves LSPainelli VSYamaguchi Get al. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol. 2017;123:213220. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Rahimi R. The effect of CYP1A2 genotype on the ergogenic properties of caffeine during resistance exercise: a randomized, double-blind, placebo-controlled, crossover study. Ir J Med Sci. 2019;188:337345. PubMed ID: 29532291 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 1671 1671 787
Full Text Views 44 44 22
PDF Downloads 27 27 13
Altmetric Badge
PubMed
Google Scholar