Mathematical Model of the Takeoff Phase in the Pole Vault

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

A mathematical model is presented of the takeoff phase in the pole vault for an athlete vaulting with a rigid pole. An expression is derived that gives the maximum height that the vaulter may grip on the pole in terms of the takeoff velocity, the takeoff angle, the athlete's vertical reach, and the depth of the takeoff box. Including the dependence of the vaulter's takeoff velocity on the takeoff angle reveals that there is an optimum takeoff angle that maximizes the vaulter's grip height. It is also shown that taller and faster vaulters are able to grip higher on the pole. The results of the investigation compare favorably with data for vaulters using bamboo and steel poles.

Nicholas P. Linthorne is with the Department of Physics, University of Western Australia, Nedlands, Western Australia, 6009, Australia.

All Time Past Year Past 30 Days
Abstract Views 214 207 14
Full Text Views 5 5 0
PDF Downloads 10 10 0