Segmented Forefoot Plate in Basketball Footwear: Does it Influence Performance and Foot Joint Kinematics and Kinetics?

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

This study examined the effects of shoes’ segmented forefoot stiffness on athletic performance and ankle and metatarsophalangeal joint kinematics and kinetics in basketball movements. Seventeen university basketball players performed running vertical jumps and 5-m sprints at maximum effort with 3 basketball shoes of various forefoot plate conditions (medial plate, medial + lateral plates, and no-plate control). One-way repeated measures ANOVAs were used to examine the differences in athletic performance, joint kinematics, and joint kinetics among the 3 footwear conditions (α = .05). Results indicated that participants wearing medial + lateral plates shoes demonstrated 2.9% higher jump height than those wearing control shoes (P = .02), but there was no significant differences between medial plate and control shoes (P > .05). Medial plate shoes produced greater maximum plantar flexion velocity than the medial + lateral plates shoes (P < .05) during sprinting. There were no significant differences in sprint time. These findings implied that inserting plates spanning both the medial and lateral aspects of the forefoot could enhance jumping, but not sprinting performances. The use of a medial plate alone, although induced greater plantar flexion velocity at the metatarsophalangeal joint during sprinting, was not effective in improving jump heights or sprint times.

Lam is with the Department of Kinesiology, Shenyang Sport University, Shenyang, China; and also with Li Ning Sports Science Research Center, Beijing, China. W.C.-C. Lee is with the School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, New South Wales, Australia. W.M. Lee and Kong are with Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore. Ma is with the Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China.

Address author correspondence to Wing-Kai Lam at gilbertlam@li-ning.com.cn.
  • 1.

    Stefanyshyn D, Fusco C. Increased shoe bending stiffness increases sprint performance. Sports Biomech. 2004;3(1):55–66. PubMed doi:10.1080/14763140408522830

  • 2.

    Toon D, Vinet A, Pain MTG, Caine MP. A methodology to investigate the relationship lower-limb dynamics and shoe stiffness using custom-built footwear. J Sports Eng Technol. 2010;225(1):32–37. doi:10.1177/1754337110396792

    • Search Google Scholar
    • Export Citation
  • 3.

    Tinoco N, Bourgit D, Morin JB. Influence of midsole metatarsophalangeal stiffness on jumping and cutting movement agility. J Sports Eng Technol. 2010;224(3):209–217.

    • Search Google Scholar
    • Export Citation
  • 4.

    Willwacher S, Konig M, Potthast W, Bruggemann GP. Does specific footwear facilitate energy storage and return at the metatarsophalangeal joint in running? J Appl Biomech. 2013;29(5):583–592. PubMed doi:10.1123/jab.29.5.583

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Stefanyshyn DJ, Wannop JW. The influence of forefoot bending stiffness of footwear on athletic injury and performance. Footwear Sci. 2016;8(2):51–63. doi:10.1080/19424280.2016.1144652

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Ben Abdelkrim N, El Fazaa S, El Ati J. Time-motion analysis and physiological data of elite under-19-year-old basketball players during competition. Br J Sports Med. 2007;41(2):69–75. PubMed doi:10.1136/bjsm.2006.032318

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lam WK, Park EJ, Lee KK, Cheung JT. Shoe collar height effect on athletic performance, ankle joint kinematics and kinetics during unanticipated maximum-effort side-cutting performance. J Sports Sci. 2015;33(16):1738–1749. PubMed doi:10.1080/02640414.2015.1011206

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    McClay IS, Robinson JR, Andriacchi TP, et al. A profile of ground reaction forces in professional basketball. J Appl Biomech. 1994;10:222–236. doi:10.1123/jab.10.3.222

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Shimokochi Y, Ide D, Kokubu M, Nakaoji T. Relationships among performance of lateral cutting maneuver from lateral sliding and hip extension and abduction motions, ground reaction force, and body center of mass height. J Strength Cond Res. 2013;27(7):1851–1860. PubMed doi:10.1519/JSC.0b013e3182764945

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lam WK, Ng WX, Kong PW. Influence of shoe midsole hardness on plantar pressure distribution in four basketball-related movements. Res Sports Med. 2017;25(1):37–47. PubMed doi:10.1080/15438627.2016.1258643

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Cong Y, Lam WK, Cheung JT, Zhang M. In-shoe plantar tri-axial stress profiles during maximum-effort cutting maneuvers. J Biomech. 2014;47(16):3799–3806. PubMed doi:10.1016/j.jbiomech.2014.10.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Pau M, Ciuti C. Stresses in the plantar region for long- and short-range throws in women basketball players. Eur J Sport Sci. 2013;13(5):575–581. PubMed doi:10.1080/17461391.2012.738711

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Sterzing T, Custoza G, Ding R, Cheung JT. Segmented midsole hardness in the midfoot to forefoot region of running shoes alters subjective perception and biomechanics during heel-toe running revealing potential to enhance footwear. Footwear Sci. 2015;7(2):63–79. doi:10.1080/19424280.2015.1008589

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Queen RM, Verma R, Abbey AN, Nunley JA, Butler RJ. Plantar loading during jumping while wearing a rigid carbon graphite footplate. Gait Posture. 2014;39(2):707–711. PubMed doi:10.1016/j.gaitpost.2013.10.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Kavanaugh JH, Brower TD, Mann RV. The Jones fracture revisited. J Bone Joint Surg Am. 1978;60(6):776–782. PubMed doi:10.2106/00004623-197860060-00008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Stefanyshyn DJ, Nigg BM. Contribution of the lower extremity joints to mechanical energy in running vertical jumps and running long jumps. J Sports Sci. 1998;16(2):177–186. PubMed doi:10.1080/026404198366885

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Stefanyshyn DJ, Nigg BM. Influence of midsole bending stiffness on joint energy and jump height performance. Med Sci Sports Exerc. 2000;32(2):471–476. PubMed doi:10.1097/00005768-200002000-00032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Miller JE, Nigg BM, Liu W, Stefanyshyn DJ, Nurse MA. Influence of foot, leg and shoe characteristics on subjective comfort. Foot Ankle Int. 2000;21(9):759–767. PubMed doi:10.1177/107110070002100908

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Guettler JH, Ruskan GJ, Bytomski JR, Brown CR, Richardson JK, Moorman CT. Fifth metatarsal stress fractures in elite basketball players: evaluation of forces acting on the fifth metatarsal. Am J Orthop. 2006;35(11):532–536. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Sigward S, Powers CM. The influence of experience on knee mechanics during side-step cutting in females. Clin Biomech. 2006;21(7):740–747. doi:10.1016/j.clinbiomech.2006.03.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hanavan EP Jr. A Mathematical Model of the Human Body. Amrl-Tr-64-102. AMRL-TR. 1964;1964:1–149. PubMed

  • 22.

    Worobets J, Wannop JW. Influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on three athletic movements. Sports Biomech.2015;14(3):351–360. PubMed doi:10.1080/14763141.2015.1084031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Oleson M, Adler D, Goldsmith P. A comparison of forefoot stiffness in running and running shoe bending stiffness. J Biomech. 2005;38(9):1886–1894. PubMed doi:10.1016/j.jbiomech.2004.08.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Luo G, Stefanyshyn D. Ankle moment generation and maximum-effort curved sprinting performance. J Biomech. 2012;45(16):2763–2768. PubMed doi:10.1016/j.jbiomech.2012.09.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Man HS, Lam WK, Lee J, Capio CM, Leung AK. Is passive metatarsophalangeal joint stiffness related to leg stiffness, vertical stiffness and running economy during sub-maximal running? Gait Posture. 2016;49:303–308. PubMed doi:10.1016/j.gaitpost.2016.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Heng ML, Chua YK, Pek HK, Krishnasamy P, Kong PW. A novel method of measuring passive quasi-stiffness in the first metatarsophalangeal joint. J Foot Ankle Res. 2016;9:41. PubMed doi:10.1186/s13047-016-0173-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Stefanyshyn DJ, Nigg BM. Mechanical energy contribution of the metatarsophalangeal joint to running and sprinting. J Biomech. 1997;30(11–12):1081–1085. PubMed doi:10.1016/S0021-9290(97)00081-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Brizuela G, Llana S, Ferrandis R, Garcia-Belenguer AC. The influence of basketball shoes with increased ankle support on shock attenuation and performance in running and jumping. J Sports Sci. 1997;15(5):505–515. PubMed doi:10.1080/026404197367146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Chuckpaiwong B, Nunley JA, Mall NA, Queen RM. The effect of foot type on in-shoe plantar pressure during walking and running. Gait Posture. 2008;28(3):405–411. PubMed doi:10.1016/j.gaitpost.2008.01.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Nin DZ, Lam WK, Kong PW. Effect of body mass and midsole hardness on kinetic and perceptual variables during basketball landing manoeuvres. J Sports Sci. 2016;34(8):756–765. PubMed doi:10.1080/02640414.2015.1069381

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nigg BM. The role of impact forces and foot pronation: a new paradigm. Clin J Sport Med. 2001;11:2–9. PubMed doi:10.1097/00042752-200101000-00002

All Time Past Year Past 30 Days
Abstract Views 189 189 24
Full Text Views 20 20 0
PDF Downloads 2 2 0