Modulation of Vertical Ground Reaction Impulse With Real-Time Biofeedback: A Feasibility Study

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Given its apparent representation of cumulative (vs peak) loads, this feasibility study investigates vertical ground reaction impulse (vGRI) as a real-time biofeedback variable for gait training aimed at reducing lower limb loading. Fifteen uninjured participants (mean age = 27 y) completed 12 2-min trials, 1 at each combination of 4 walking speeds (1.0, 1.2, 1.4, and 1.6 m/s) and 3 targeted reductions in vGRI (5, 10, and 15%) of the assigned (“target”) limb, with the latter specified relative to an initial baseline (no feedback) condition at each speed. The ability to achieve targeted reductions was assessed using step-by-step errors between measured and targeted vGRI. Mean (SD) errors were 5.2% (3.7%); these were larger with faster walking speeds but consistent across reduction targets. Secondarily, we evaluated the strategy used to modulate reductions (ie, stance time or peak vertical ground reaction force [vGRF]) and the resultant influences on knee joint loading (external knee adduction moment [EKAM]). On the targeted limb, stance times decreased (P < .001) with increasing reduction target; first and second peaks in vGRF were similar (P > .104) across all target conditions. While these alterations did not significantly reduce EKAM on the target limb, future work in patients with knee pathologies is warranted.

Golyski, Bell, Husson, Wolf, and Hendershot are with the Research & Development Section, Dept of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD. Bell, Wolf, and Hendershot are also with the Dept of DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD. Husson is also with the BADER Consortium, University of Delaware, Newark, DE. Hendershot is also with the Dept of Rehabilitation Medicine, Uniformed Services University of Health Sciences, Bethesda, MD.

Address author correspondence to Brad D. Hendershot at bradford.d.hendershot2.civ@mail.mil.
Journal of Applied Biomechanics

Article Sections

References

  • 1.

    Miyazaki TWada MKawahara HSato MBaba HShimada S. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis. 2002;61:617622. PubMed doi:10.1136/ard.61.7.617

    • Search Google Scholar
    • Export Citation
  • 2.

    Englund M. The role of biomechanics in the initiation and progression of OA of the knee. Best Pract Res Clin Rheumatol. 2010;24(1):3946. doi:10.1016/j.berh.2009.08.008

    • Search Google Scholar
    • Export Citation
  • 3.

    Sasaki KNeptune RR. Individual muscle contributions to the axial knee joint contact force during normal walking. J Biomech. 2010;43(14):27802784. PubMed doi:10.1016/j.jbiomech.2010.06.011

    • Search Google Scholar
    • Export Citation
  • 4.

    Sasaki K. Muscle contributions to the tibiofemoral joint contact force during running-biomed 2010. Biomed Sci Instrum. 2009;46:305310.

    • Search Google Scholar
    • Export Citation
  • 5.

    Miller RHEdwards WBBrandon SCMorton AMDeluzio KJ. Why don’t most runners get knee osteoarthritis? A case for per-unit-distance loads. Med Sci Sports Exerc. 2014;46(3):572579. PubMed doi:10.1249/MSS.0000000000000135

    • Search Google Scholar
    • Export Citation
  • 6.

    Pruziner ALWerner KMCopple TJHendershot BDWolf EJ. Does intact limb loading differ in servicemembers with traumatic lower limb loss? Clin Orthop Relat Res. 2014;472(10):30683075. PubMed doi:10.1007/s11999-014-3663-1

    • Search Google Scholar
    • Export Citation
  • 7.

    White SCLifeso RM. Altering asymmetric limb loading after hip arthroplasty using real-time dynamic feedback when walking. Arch Phys Med Rehabil. 2005;86(10):19581963. PubMed doi:10.1016/j.apmr.2005.04.010

    • Search Google Scholar
    • Export Citation
  • 8.

    Dingwell JBDavis BLFrazder DMFrazier DM. Use of an instrumented treadmill for real-time gait symmetry evaluation and feedback in normal and trans-tibial amputee subjects. Prosthet Orthot Int. 1996;20(2):101110. PubMed doi:10.3109/03093649609164426

    • Search Google Scholar
    • Export Citation
  • 9.

    Hunt MASimic MHinman RSBennell KLWrigley TV. Feasibility of a gait retraining strategy for reducing knee joint loading: increased trunk lean guided by real-time biofeedback. J Biomech. 2011;44(5):943947. PubMed doi:10.1016/j.jbiomech.2010.11.027

    • Search Google Scholar
    • Export Citation
  • 10.

    van den Noort JCSteenbrink FRoeles SHarlaar J. Real-time visual feedback for gait retraining: toward application in knee osteoarthritis. Med Biol Eng Comput. 2015;53(3):275286. PubMed doi:10.1007/s11517-014-1233-z

    • Search Google Scholar
    • Export Citation
  • 11.

    Simic MWrigley TVHinman RSHunt MABennell KL. Altering foot progression angle in people with medial knee osteoarthritis: the effects of varying toe-in and toe-out angles are mediated by pain and malalignment. Osteoarthr Cartil. 2013;21(9):12721280. PubMed doi:10.1016/j.joca.2013.06.001

    • Search Google Scholar
    • Export Citation
  • 12.

    Heiderscheit BCChumanov ESMichalski MPWille CMRyan MB. Effects of step rate manipulation on joint mechanics during running. Med Sci Sport Exerc. 2011;43(2):296302. doi:10.1249/MSS.0b013e3181ebedf4.

    • Search Google Scholar
    • Export Citation
  • 13.

    Gerbrands TAPisters MFVanwanseele B. Individual selection of gait retraining strategies is essential to optimally reduce medial knee load during gait. Clin Biomech (Bristol Avon). 2014;29(7):828834. doi:10.1016/j.clinbiomech.2014.05.005

    • Search Google Scholar
    • Export Citation
  • 14.

    Maly MR. Abnormal and cumulative loading in knee osteoarthritis. Curr Opin Rheumatol. 2008;20(5):547552. PubMed doi:10.1097/BOR.0b013e328307f58c

    • Search Google Scholar
    • Export Citation
  • 15.

    Edwards WBTaylor DRudolphi TJGillette JCDerrick TR. Effects of stride length and running mileage on a probabilistic stress fracture model. Med Sci Sport Exerc. 2009;41(12):21772184. doi:10.1249/MSS.0b013e3181a984c4

    • Search Google Scholar
    • Export Citation
  • 16.

    Thorp LESumner DRWimmer MABlock JA. Relationship between pain and medial knee joint loading in mild radiographic knee osteoarthritis. Arthritis Rheum. 2007;57(7):12541260. doi:10.1002/art.22991

    • Search Google Scholar
    • Export Citation
  • 17.

    Thorp LESumner DRBlock JAMoisio KCShott SWimmer MA. Knee joint loading differs in individuals with mild compared with moderate medial knee osteoarthritis. Arthritis Rheum. 2006;54(12):38423849. PubMed doi:10.1002/art.22247

    • Search Google Scholar
    • Export Citation
  • 18.

    Robbins SMTeoli APreuss RA. Mechanical and neuromuscular changes with lateral trunk lean gait modifications. Gait Posture. 2016;49:252257. doi:10.1016/j.gaitpost.2016.07.017

    • Search Google Scholar
    • Export Citation
  • 19.

    Jordan KChallis JHNewell KM. Walking speed influences on gait cycle variability. Gait Posture. 2007;26(1):128134. PubMed doi:10.1016/j.gaitpost.2006.08.010

    • Search Google Scholar
    • Export Citation
  • 20.

    Martin PEMarsh AP. Step length and frequency effects on ground reaction forces during walking. J Biomech. 1992;25(10):12371239. PubMed doi:10.1016/0021-9290(92)90081-B

    • Search Google Scholar
    • Export Citation
  • 21.

    Nolan LWit ADudziñski KLees ALake MWychowañski M. Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture. 2003;17(2):142151. PubMed doi:10.1016/S0966-6362(02)00066-8

    • Search Google Scholar
    • Export Citation
  • 22.

    Franz JRMaletis MKram R. Real-time feedback enhances forward propulsion during walking in old adults. Clin Biomech (Bristol Avon). 2014;29(1):6874. doi:10.1016/j.clinbiomech.2013.10.018

    • Search Google Scholar
    • Export Citation
  • 23.

    Caldwell LKLaubach LLBarrios JA. Effect of specific gait modifications on medial knee loading, metabolic cost and perception of task difficulty. Clin Biomech (Bristol Avon). 2013;28(6):649654. doi:10.1016/j.clinbiomech.2013.05.012

    • Search Google Scholar
    • Export Citation
  • 24.

    Davis BLOrtolano MRichards KRedhed JKuznicki JSahgal V. Realtime visual feedback diminishes energy consumption of amputee subjects during treadmill locomotion. J Prosthet Orthot. 2004;16(2):4954. https://journals.lww.com/jpojournal/Fulltext/2004/04000/Realtime_Visual_Feedback_Diminishes_Energy.4.aspx

    • Search Google Scholar
    • Export Citation
  • 25.

    Gordon KEFerris DPKuo AD. Metabolic and mechanical energy costs of reducing vertical center of mass movement during gait. Arch Phys Med Rehabil. 2009;90(1):136144. PubMed doi:10.1016/j.apmr.2008.07.014

    • Search Google Scholar
    • Export Citation
  • 26.

    Mian OSThom JMArdigo LPNarici MVMinetti AE. Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiol. 2006;186(2):127139. doi:10.1111/j.1748-1716.2006.01522.x

    • Search Google Scholar
    • Export Citation
  • 27.

    Gaume AVialatte AMora-Sánchez ARamdani CVialatte FB. A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback. Neurosci Biobehav Rev. 2016;68:891910. doi:10.1016/j.neubiorev.2016.06.012

    • Search Google Scholar
    • Export Citation

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 0 0 0
PDF Downloads 0 0 0

Altmetric Badge

PubMed

Google Scholar