Ankle and Midfoot Power During Walking and Stair Ascent in Healthy Adults

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Ankle power dominates forward propulsion of gait, but midfoot power generation is also important for successful push-off. However, it is unclear if midfoot power generation increases or stays the same in response to propulsive activities that induce larger external loads and require greater ankle power. The purpose of this study was to examine ankle and midfoot power in healthy adults during progressively more demanding functional tasks. Multisegment foot motion (tibia, calcaneus, and forefoot) and ground reaction forces were recorded as participants (N = 12) walked, ascended a standard step, and ascended a high step. Ankle and midfoot positive peak power and positive total power, and the proportion of midfoot to ankle positive total power were calculated. One-way repeated-measures analyses of variance were conducted to evaluate differences across tasks. Main effects were found for ankle and midfoot peak and total powers (all Ps < .01), but not for the proportion of midfoot-to-ankle total power (P = .33). Ankle and midfoot power significantly increased across each task. Midfoot power increased in proportion to ankle power and in congruence to the external load of a task. Study findings may serve to inform multisegment foot modeling applications and internal mechanistic theories of normal and pathological foot function.

DiLiberto is with the Department of Physical Therapy, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA. Nawoczenski is with the Department of Orthopaedics, University of Rochester, Rochester, NY, USA. Houck is with the Doctor of Physical Therapy Program, George Fox University, Newberg, OR, USA.

DiLiberto (frank.diliberto@rosalindfranklin.edu) is corresponding author.
Journal of Applied Biomechanics

Article Sections

References

  • 1.

    Deschamps KMatricali GARoosen Pet al. Comparison of foot segmental mobility and coupling during gait between patients with diabetes mellitus with and without neuropathy and adults without diabetes. Clin Biomech. 2013;28(7):813819. doi:10.1016/j.clinbiomech.2013.06.008

    • Search Google Scholar
    • Export Citation
  • 2.

    Neville CBucklin MOrdway NLemley F. An ankle-foot orthosis with a lateral extension reduces forefoot abduction in subjects with stage II posterior tibial tendon dysfunction. J Orthop Sports Phys Ther. 2016;46(1):2633. PubMed ID: 26654572 doi:10.2519/jospt.2016.5618

    • Search Google Scholar
    • Export Citation
  • 3.

    Rao SBaumhauer JFTome JNawoczenski DA. Orthoses alter in vivo segmental foot kinematics during walking in patients with midfoot arthritis. Arch Phys Med Rehabil. 2010;91(4):608614. PubMed ID: 20382295 doi:10.1016/j.apmr.2009.11.027

    • Search Google Scholar
    • Export Citation
  • 4.

    Barn RBrandon MRafferty Det al. Kinematic, kinetic and electromyographic response to customized foot orthoses in patients with tibialis posterior tenosynovitis, pes plano valgus and rheumatoid arthritis. Rheumatology. 2014;53(1):123130. doi:10.1093/rheumatology/ket337

    • Search Google Scholar
    • Export Citation
  • 5.

    Neptune RRKautz SAZajac FE. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech. 2001;34(11):13871398. PubMed ID: 11672713 doi:10.1016/S0021-9290(01)00105-1

    • Search Google Scholar
    • Export Citation
  • 6.

    Deschamps KStaes FRoosen Pet al. Body of evidence supporting the clinical use of 3D multisegment foot models: a systematic review. Gait Posture. 2011;33(3):338349. PubMed ID: 21251834 doi:10.1016/j.gaitpost.2010.12.018

    • Search Google Scholar
    • Export Citation
  • 7.

    Bruening DACooney KMBuczek FL. Analysis of a kinetic multi-segment foot model part II: kinetics and clinical implications. Gait Posture. 2012;35(4):535540. PubMed ID: 22197290 doi:10.1016/j.gaitpost.2011.11.012

    • Search Google Scholar
    • Export Citation
  • 8.

    DiLiberto FETome JBaumhauer JFQuinn JRHouck JNawoczenski DA. Multi-joint foot kinetics during walking in people with diabetes mellitus and peripheral neuropathy. J Biomech. 2015;48(13):36793684. doi:10.1016/j.jbiomech.2015.08.020

    • Search Google Scholar
    • Export Citation
  • 9.

    Dixon PCBöhm HDöderlein L. Ankle and midfoot kinetics during normal gait: a multi-segment approach. J Biomech. 2012;45(6):10111016. PubMed ID: 22304842 doi:10.1016/j.jbiomech.2012.01.001

    • Search Google Scholar
    • Export Citation
  • 10.

    MacWilliams BACowley MNicholson DE. Foot kinematics and kinetics during adolescent gait. Gait Posture. 2003;17(3):214224. PubMed ID: 12770635 doi:10.1016/S0966-6362(02)00103-0

    • Search Google Scholar
    • Export Citation
  • 11.

    Saraswat PMacWilliams BADavis RBD’Astous JL. Kinematics and kinetics of normal and planovalgus feet during walking. Gait Posture. 2014;39(1):339345. PubMed ID: 24001868 doi:10.1016/j.gaitpost.2013.08.003

    • Search Google Scholar
    • Export Citation
  • 12.

    Winter DA. Mechanical work, energy and power. Biomechanics of Human Movement. John Wiley & Sons, Inc;1979;84106.

  • 13.

    Okita NMeyers SAChallis JHSharkey NA. Midtarsal joint locking: new perspectives on an old paradigm. J Orthop Res. 2014;32(1):110115. PubMed ID: 24038197 doi:10.1002/jor.22477

    • Search Google Scholar
    • Export Citation
  • 14.

    Kelly LALichtwark GCresswell AG. Active regulation of longitudinal arch compression and recoil during walking and running. J R Soc Interface. 2015;12(102):20141076. PubMed ID: 25551151 doi:10.1098/rsif.2014.1076

    • Search Google Scholar
    • Export Citation
  • 15.

    Wager JCChallis JH. Elastic energy within the human plantar aponeurosis contributes to arch shortening during the push-off phase of running. J Biomech. 2016;49(5):704709. PubMed ID: 26944691 doi:10.1016/j.jbiomech.2016.02.023

    • Search Google Scholar
    • Export Citation
  • 16.

    Blackwood CBYuen TJSangeorzan BJLedoux WR. The midtarsal joint locking mechanism. Foot Ankle Int. 2005;26(12):10741080. PubMed ID: 16390642 doi:10.1177/107110070502601213

    • Search Google Scholar
    • Export Citation
  • 17.

    Erdemir AHamel AJFauth ARPiazza SJSharkey NA. Dynamic loading of the plantar aponeurosis in walking. J Bone Joint Surg Am. 2004;86(3):546552. PubMed ID: 14996881 doi:10.2106/00004623-200403000-00013

    • Search Google Scholar
    • Export Citation
  • 18.

    Martin RLIrrgang JJ. A survey of self-reported outcome instruments for the foot and ankle. J Orthop Sports Phys Ther. 2007;37(2):7284. PubMed ID: 17366962 doi:10.2519/jospt.2007.2403

    • Search Google Scholar
    • Export Citation
  • 19.

    Martin RLIrrgang JJBurdett RGConti SFVan Swearington JM. Evidence of validity for the foot and ankle ability measure (FAAM). Foot Ankle Int. 2005;26(11):968983. PubMed ID: 16309613 doi:10.1177/107110070502601113

    • Search Google Scholar
    • Export Citation
  • 20.

    Nawoczenski DABaumhauer JFUmberger BR. Relationship between clinical measurements and motion of the first metatarsophalangeal joint during gait. J Bone Joint Surg Am. 1999;81(3):370376. PubMed ID: 10199275 doi:10.2106/00004623-199903000-00009

    • Search Google Scholar
    • Export Citation
  • 21.

    Rao SBaumhauer JFTome JNawoczenski DA. Comparison of in vivo segmental foot motion during walking and step descent in patients with midfoot arthritis and matched asymptomatic control subjects. J Biomech. 2009;42(8):10541060. PubMed ID: 19409567 doi:10.1016/j.jbiomech.2009.02.006

    • Search Google Scholar
    • Export Citation
  • 22.

    Nawoczenski DADiLiberto FECantor MSTome JMDiGiovanni BF. Ankle power and endurance outcomes following isolated gastrocnemius recession for achilles tendinopathy. Foot Ankle Int. 2016;37(7):766775. PubMed ID: 26989087 doi:10.1177/1071100716638128

    • Search Google Scholar
    • Export Citation
  • 23.

    Chen IHKuo KNAndriacchi TP. The influence of walking speed on mechanical joint power during gait. Gait Posture. 1997;6:171176. doi:10.1016/S0966-6362(97)00009-X

    • Search Google Scholar
    • Export Citation
  • 24.

    Oberg TKarsznia AOberg K. Basic gait parameters: reference data for normal subjects, 10-79 years of age. J Rehabil Res Dev. 1993;30(2):210223. PubMed ID: 8035350

    • Search Google Scholar
    • Export Citation
  • 25.

    DiLiberto FETome JBaumhauer JFHouck JNawoczenski DA. Individual metatarsal and forefoot kinematics during walking in people with diabetes mellitus and peripheral neuropathy. Gait Posture. 2015;42(4):435441. PubMed ID: 26253996 doi:10.1016/j.gaitpost.2015.07.012

    • Search Google Scholar
    • Export Citation
  • 26.

    Umberger BRNawoczenski DABaumhauer JF. Reliability and validity of first metatarsophalangeal joint orientation measured with an electromagnetic tracking device. Clin Biomech. 1999;14(1):7476. doi:10.1016/S0268-0033(98)00052-7

    • Search Google Scholar
    • Export Citation
  • 27.

    Harris SMCase DT. Sexual dimorphism in the tarsal bones: implications for sex determination. J Forensic Sci. 2012;57(2):295305. doi:10.1111/j.1556-4029.2011.02004.x

    • Search Google Scholar
    • Export Citation
  • 28.

    Houck JTome JNawoczenski DA. Subtalar neutral position as an offset for a kinematic model of the foot during walking. Gait Posture. 2008;28(1):2937. PubMed ID: 17988870 doi:10.1016/j.gaitpost.2007.09.008

    • Search Google Scholar
    • Export Citation
  • 29.

    Leardini ABenedetti MGCatani FSimoncini LGiannini S. An anatomically based protocol for the description of foot segment kinematics during gait. Clin Biomech. 1999;14(8):528536. doi:10.1016/S0268-0033(99)00008-X

    • Search Google Scholar
    • Export Citation
  • 30.

    Rao SSaltzman CYack HJ. Segmental foot mobility in individuals with and without diabetes and neuropathy. Clin Biomech. 2007;22(4):464471. doi:10.1016/j.clinbiomech.2006.11.013

    • Search Google Scholar
    • Export Citation
  • 31.

    Schafer JLGraham JW. Missing data: our view of the state of the art. Psychol Methods. 2002;7(2):147177. PubMed ID: 12090408 doi:10.1037/1082-989X.7.2.147

    • Search Google Scholar
    • Export Citation
  • 32.

    Graham JW. Missing data analysis: making it work in the real world. Annu Rev Psychol. 2009;60:549576. PubMed ID: 18652544 doi:10.1146/annurev.psych.58.110405.085530

    • Search Google Scholar
    • Export Citation
  • 33.

    Jennings MMChristensen JC. The effects of sectioning the spring ligament on rearfoot stability and posterior tibial tendon efficiency. J Foot Ankle Surg. 2008;47(3):219224. PubMed ID: 18455668 doi:10.1053/j.jfas.2008.02.002

    • Search Google Scholar
    • Export Citation
  • 34.

    Nester CJones RKLiu Aet al. Foot kinematics during walking measured using bone and surface mounted markers. J Biomech. 2007;40(15):34123423. PubMed ID: 17631298 doi:10.1016/j.jbiomech.2007.05.019

    • Search Google Scholar
    • Export Citation
  • 35.

    McKeon POHertel JBramble DDavis I. The foot core system: a new paradigm for understanding intrinsic foot muscle function. Br J Sports Med. 2015;49(5):290290. PubMed ID: 24659509 doi:10.1136/bjsports-2013-092690

    • Search Google Scholar
    • Export Citation
  • 36.

    Ker RFBennett MBBibby SRKester RCAlexander RM. The spring in the arch of the human foot. Nature. 1987;325:147149. PubMed ID: 3808070 doi:10.1038/325147a0

    • Search Google Scholar
    • Export Citation
  • 37.

    Sharkey NAFerris LDonahue SW. Biomechanical consequences of plantar fascial release or rupture during gait: part I—disruptions in longitudinal arch conformation. Foot Ankle Int. 1998;19(12):812820. PubMed ID: 9872467 doi:10.1177/107110079801901204

    • Search Google Scholar
    • Export Citation
  • 38.

    Fessel GJacob HAWyss CMittlmeier TMuller-Gerbl MButtner A. Changes in length of the plantar aponeurosis during the stance phase of gait—an in vivo dynamic fluoroscopic study. Ann Anat. 2014;196(6):471478. PubMed ID: 25113063 doi:10.1016/j.aanat.2014.07.003

    • Search Google Scholar
    • Export Citation

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 7 7 7
Full Text Views 2 2 2
PDF Downloads 3 3 3

Altmetric Badge

PubMed

Google Scholar