Determination of Ankle and Metatarsophalangeal Stiffness During Walking and Jogging

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Forefoot stiffness has been shown to influence joint biomechanics. However, little or no data exist on metatarsophalangeal stiffness. Twenty-four healthy rearfoot strike runners were recruited from a staff and student population at the University of Central Lancashire. Five repetitions of shod, self-selected speed level walking, and jogging were performed. Kinetic and kinematic data were collected using retroreflective markers placed on the lower limb and foot to create a 3-segment foot model using the calibrated anatomical system technique. Ankle and metatarsophalangeal moments and angles were calculated. Stiffness values were calculated using a linear best fit line of moment versus of angle plots. Paired t tests were used to compare values between walking and jogging conditions. Significant differences were seen in ankle range of motion, but not in metatarsophalangeal range of motion. Maximum moments were significantly greater in the ankle during jogging, but these were not significantly different at the metatarsophalangeal joint. Average ankle joint stiffness exhibited significantly lower stiffness when walking compared with jogging. However, the metatarsophalangeal joint exhibited significantly greater stiffness when walking compared with jogging. A greater understanding of forefoot stiffness may inform the development of footwear, prosthetic feet, and orthotic devices, such as ankle foot orthoses for walking and sporting activities.

Mager, Hennies, Dötzel, and Capanni are with the Faculty of Mechatronics and Medical Engineering, Ulm University of Applied Sciences, Ulm, Germany. Richards, Chohan, and Mbuli are with Allied Health Research Unit, University of Central Lancashire, Preston, United Kingdom.

Richards (jrichards@uclan.ac.uk) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Willwacher SKönig MBraunstein BGoldmann JBrüggemann G. The gearing function of running shoe longitudinal bending stiffness. Gait Posture. 2014;40(3):386390. PubMed ID: 24882222 doi:10.1016/j.gaitpost.2014.05.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Michael GBlickhan R. Joint stiffness of the ankle and the knee in running. J Biomech. 2002;35:14591474. doi:10.1016/S0021-9290(02)00183-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Farley CTHoudijk HHVan Strien CLouie M. Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. J Appl Physiol. 1998;85(3):10441055. PubMed ID: 9729582 doi:10.1152/jappl.1998.85.3.1044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Apps CSterzing TBrien TOLake M. Lower limb joint stiffness and muscle co-contraction adaptations to instability footwear during locomotion. J Electromyogr Kinesiol. 2016;31:5562. PubMed ID: 27684529 doi:10.1016/j.jelekin.2016.09.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kuitunen SKomi PVKyröläinen H. Knee and ankle joint stiffness in sprint running. Med Sci Sports Exerc. 2002;34(1):166173. PubMed ID: 11782663 doi:10.1097/00005768-200201000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Farley CTMorgenroth DC. Leg stiffness primarily depends on ankle stiffness during human hopping. J Biomech. 1999;32:267273. PubMed ID: 10093026 doi:10.1016/S0021-9290(98)00170-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Sinclair JRichards JTaylor PJShore H. The influence of semi-custom orthoses on multi-segment foot kinematics in males. Foot Ankle Online J. 2015;8(4):5. Retrieved from http://faoj.org/2015/12/31/the-influence-of-semi-custom-orthoses-on-multi-segment-foot-kinematics-in-males/. doi:10.3827/faoj.2015.0804.0005

    • Search Google Scholar
    • Export Citation
  • 8.

    Park SLam WYoon SLee KKRyu J. Effects of forefoot bending stiffness of badminton shoes on agility, comfort perception and lower leg kinematics during typical badminton movements. Sport Biomech. 2017;16(3):374386. PubMed ID: 28464750 doi:10.1080/14763141.2017.1321037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Leardini ABenedetti MGCatani FSimoncini LGiannini S. An anatomically based protocol for the description of foot segment kinematics during gait. Clin Biomech. 1999;14:528536. PubMed ID: 10521637 doi:10.1016/S0268-0033(99)00008-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Bezodis N. Modeling the stance leg in two-dimensional analyses of sprinting: inclusion of the MTP joint affects joint kinetics. J Appl Biomech. 2012;28:222227. PubMed ID: 22723121 doi:10.1123/jab.28.2.222

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bruening DACooney KMBuczek FL. Gait & posture analysis of a kinetic multi-segment foot model part II: kinetics and clinical implications. Gait Posture. 2012;35(4):535540. PubMed ID: 22197290 doi:10.1016/j.gaitpost.2011.11.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Blickhan R. The spring-mass model for running and hopping. J Biomech. 1989;22(11):12171227. PubMed ID: 2625422 doi:10.1016/0021-9290(89)90224-8

  • 13.

    Latash MLZatsiorsky M. Joint stiffness: myth or reality? Hum Mov Sci. 1993;12:653692. doi:10.1016/0167-9457(93)90010-M

  • 14.

    Kelly LALichtwark GCresswell AGCresswell AG. Active regulation of longitudinal arch compression and recoil during walking and running. J R Soc Interface. 2015;12(102):20141076. doi:10.1098/rsif.2014.1076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Butler RJCrowell HPDavis IM. Lower extremity stiffness: implications for performance and injury. Clin Biomech. 2003;18:511517. PubMed ID: 12828900 doi:10.1016/S0268-0033(03)00071-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Cappozzol ACatan FCrocel UDLeardini A. Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech. 1995;10(4):171178. PubMed ID: 11415549 doi:10.1016/0268-0033(95)91394-T

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Yu BKienbacher TGrowney ESJohnson MEAn KN. Reproducibility of the kinematics and kinetics of the lower extremity during normal stair-climbing. J Orthop Res. 1997;15:348352. PubMed ID: 9246080 doi:10.1002/jor.1100150306

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hasegawa HYamauchi TKraemer WJ. Foot strike patterns of runners at 15 km point during an elite-level half marathon. J Strength Cond Res. 2007;21:888893. PubMed ID: 17685722

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Grood ESuntay W. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. Trans ASME. 1983;105:136144. PubMed ID: 6865355

    • Search Google Scholar
    • Export Citation
  • 20.

    Oh KPark S. The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion. J Biomech. 2017;53:127135. PubMed ID: 28168959 doi:10.1016/j.jbiomech.2017.01.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Landry SCMcKean KAHubley-Kozey CLStanish WDDeluzio KJ. Knee biomechanics of moderate OA patients measured during gait at a self-selected and fast walking speed. J Biomech. 2007;40(8):17541761. PubMed ID: 17084845 doi:10.1016/j.jbiomech.2006.08.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Keller TSWeisberger AMRay JLHasan SSShiavi RGSpengler DM. Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clin Biomech. 1996;11(5):253259. PubMed ID: 11415629 doi:10.1016/0268-0033(95)00068-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Hobara HBaum BSKwon HJet al. Amputee locomotion: spring-like leg behavior and stiffness regulation using running-specific prostheses. J Biomech. 2013;46(14):24832489. PubMed ID: 23953671 doi:10.1016/j.jbiomech.2013.07.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Oleson MAdler DGoldsmith P. A comparison of forefoot stiffness in running and running shoe bending stiffness. J Biomech. 2005;38:18861894. PubMed ID: 16023477 doi:10.1016/j.jbiomech.2004.08.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Novacheck TF. The biomechanics of running. Gait Posture. 1998;7:7795. PubMed ID: 10200378 doi:10.1016/S0966-6362(97)00038-6

  • 26.

    Bregman DJRozumalski AKoops DDe Groot VSchwartz MHarlaar J. A new method for evaluating ankle foot orthosis characteristics: BRUCE. Gait Posture. 2009;30:144149. PubMed ID: 19520576 doi:10.1016/j.gaitpost.2009.05.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 74 74 21
Full Text Views 18 18 2
PDF Downloads 4 4 0
Altmetric Badge
PubMed
Google Scholar