Skeletal Muscle Adaptations and Passive Muscle Stiffness in Cerebral Palsy: A Literature Review and Conceptual Model

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

This literature review focuses on the primary morphological and structural characteristics, and mechanical properties identified in muscles affected by spastic cerebral palsy (CP). CP is a nonprogressive neurological disorder caused by brain damage and is commonly diagnosed at birth. Although the brain damage is not progressive, subsequent neurophysiological developmental adaptations may initiate changes in muscle structure, function, and composition, causing abnormal muscle activity and coordination. The symptoms of CP vary among patients. However, muscle spasticity is commonly present and is one of the most debilitating effects of CP. Here, we present the current knowledge regarding the mechanical properties of skeletal tissue affected by spastic CP. An increase in sarcomere length, collagen content, and fascicle diameter, and a reduction in the number of satellite cells within spastic CP muscle were consistent findings in the literature. However, studies differed in changes in fascicle lengths and fiber diameters. We also present a conceptual mechanical model of fascicle force transmission that incorporates mechanisms which impact both serial and lateral force production, highlighting the connections between the macro and micro structures of muscle to assist in deducing specific mechanisms for property changes and reduced force production.

Tisha and López-Ortiz are with the Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA. Armstrong and Wagoner Johnson are with the Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. Wagoner Johnson is also with the Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA; and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA. López-Ortiz is also affiliated with the Center for Health Aging and Disability, the Neuroscience Program, and the Illinois Informatics Institute at the University of Illinois at Urbana-Champaign. Tisha and Armstrong contributed equally.

Wagoner Johnson (ajwj@illinois.edu) and López-Ortiz (lopezort@illinois.edu) are corresponding authors.
Journal of Applied Biomechanics

Article Sections

References

  • 1.

    Rosenbaum PPaneth NLeviton Aet al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:814. PubMed ID: 17370477

    • Search Google Scholar
    • Export Citation
  • 2.

    Oskoui MCoutinho FDykeman JJette NPringsheim T. An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2013;55(6):509519. PubMed ID: 23346889 doi:10.1111/dmcn.12080

    • Search Google Scholar
    • Export Citation
  • 3.

    Christensen DVan Naarden Braun KDoernberg Net al. Prevalence of cerebral palsy, co-occurring autism spectrum disorders, and motor functioning, autism and developmental disabilities monitoring network, US, 2008. Dev Med Child Neurol. 2014;56(1):5965. PubMed ID: 24117446 doi:10.1111/dmcn.12268

    • Search Google Scholar
    • Export Citation
  • 4.

    Sanger TDDelgado MRGaebler-Spira DHallett MMink JW; Task Force on Childhood Motor Disorders. Classification and definition of disorders causing hypertonia in childhood. Pediatrics. 2003;111(1):8997. PubMed ID: 12509602 doi:10.1542/peds.111.1.e89

    • Search Google Scholar
    • Export Citation
  • 5.

    Davis DW. Review of cerebral palsy, part I: description, incidence, and etiology. Neonatal Netw. 1997;16(3):712. PubMed ID: 9155357

  • 6.

    Ross SMMacDonald MBigouette JP. Effects of strength training on mobility in adults with cerebral palsy: a systematic review. Disabil Health J. 2016;9(3):375384. PubMed ID: 27286912 doi:10.1016/j.dhjo.2016.04.005

    • Search Google Scholar
    • Export Citation
  • 7.

    Mathewson MALieber RL. Pathophysiology of muscle contractures in cerebral palsy. Phys Med Rehabil Clin N Am. 2015;26(1):5767. PubMed ID: 25479779 doi:10.1016/j.pmr.2014.09.005

    • Search Google Scholar
    • Export Citation
  • 8.

    Verschuren OSmorenburg ALuiking YBell KBarber LPeterson MD. Determinants of muscle preservation in individuals with cerebral palsy across the lifespan: a narrative review of the literature. J Cachexia Sarcopenia Muscle. 2018;9(3):453464. PubMed ID: 29392922 doi:10.1002/jcsm.12287

    • Search Google Scholar
    • Export Citation
  • 9.

    Smith LLee KWard SChambers HLieber R. Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length. J Physiol. 2011;589(10):26252639. PubMed ID: 21486759 doi:10.1113/jphysiol.2010.203364

    • Search Google Scholar
    • Export Citation
  • 10.

    de Bruin MSmeulders MKreulen MHuijing PJaspers R. Intramuscular connective tissue differences in spastic and control muscle: a mechanical and histological study. PLoS ONE. 2014;9(6). PubMed ID: 24977410 doi:10.1371/journal.pone.0101038

    • Search Google Scholar
    • Export Citation
  • 11.

    Booth CCortina-Borja MTheologis N. Collagen accumulation in muscles of children with cerebral palsy and correlation with severity of spasticity. Dev Med Child Neurol. 2001;43(5):314320. PubMed ID: 11368484 doi:10.1017/S0012162201000597

    • Search Google Scholar
    • Export Citation
  • 12.

    Lieber RLRunesson EEinarsson FFriden J. Inferior mechanical properties of spastic muscle bundles due to hypertrophic but compromised extracellular matrix material. Muscle Nerve. 2003;28(4):464471. PubMed ID: 14506719 doi:10.1002/mus.10446

    • Search Google Scholar
    • Export Citation
  • 13.

    Mathewson MChambers HGirard PTenenhaus MSchwartz ALieber R. Stiff muscle fibers in calf muscles of patients with cerebral palsy lead to high passive muscle stiffness. J Orthop Res. 2014;32(12):16671674. PubMed ID: 25138654 doi:10.1002/jor.22719

    • Search Google Scholar
    • Export Citation
  • 14.

    Lee SSGaebler-Spira DZhang LQRymer WZSteele KM. Use of shear wave ultrasound elastography to quantify muscle properties in cerebral palsy. Clin Biomech. 312016;2028. PubMed ID: 26490641 doi:10.1016/j.clinbiomech.2015.10.006

    • Search Google Scholar
    • Export Citation
  • 15.

    Bland DProsser LBellini LAlter KDamiano D. Tibialis anterior architecture, strength, and gait in individuals with cerebral palsy. Muscle Nerve. 2011;44(4):509517. PubMed ID: 21755515 doi:10.1002/mus.22098

    • Search Google Scholar
    • Export Citation
  • 16.

    Barber LHastings-Ison TBaker RBarrett RLichtwark G. Medial gastrocnemius muscle volume and fascicle length in children aged 2 to 5 years with cerebral palsy. Dev Med Child Neurol. 2011;53:543548. PubMed ID: 21506995 doi:10.1111/j.1469-8749.2011.03913.x

    • Search Google Scholar
    • Export Citation
  • 17.

    von Walden FJalaleddini KEvertsson BFriberg JValero-Cuevas FJPontén E. Forearm flexor muscles in children with cerebral palsy are weak, thin and stiff. Front Comput Neurosci. 2017;11:30. PubMed ID: 28487645 doi:10.3389/fncom.2017.00030

    • Search Google Scholar
    • Export Citation
  • 18.

    Mathewson MAWard SRChambers HGLieber RL. High resolution muscle measurements provide insights into equinus contractures in patients with cerebral palsy. J Orthop Res. 2015;33(1):3339. PubMed ID: 25242618 doi:10.1002/jor.22728

    • Search Google Scholar
    • Export Citation
  • 19.

    Malaiya RMcNee AEFry NREve LCGough MShortland AP. The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. J Electromyogr Kinesiol. 2007;17:657663. PubMed ID: 17459729 doi:10.1016/j.jelekin.2007.02.009

    • Search Google Scholar
    • Export Citation
  • 20.

    Mohagheghi AAKhan TMeadows THGiannikas KBaltzopoulos VMaganaris CN. Differences in gastrocnemius muscle architecture between the paretic and non-paretic legs in children with hemiplegic cerebral palsy. Clin Biomech (Bristol Avon). 2007;22:718724. PubMed ID: 17475377 doi:10.1016/j.clinbiomech.2007.03.004

    • Search Google Scholar
    • Export Citation
  • 21.

    Shortland AFry NEve LGough M. Changes to medial gastrocnemius architecture after surgical intervention in spastic diplegia. Dev Med Child Neurol. 2004;46:667673. PubMed ID: 15473170 doi:10.1111/j.1469-8749.2004.tb00979.x

    • Search Google Scholar
    • Export Citation
  • 22.

    Matthiasdottir SHahn MYaraskavitch MHerzog W. Muscle and fascicle excursion in children with cerebral palsy. Clin Biomech. 2014;29(4):458462. PubMed ID: 24485882 doi:10.1016/j.clinbiomech.2014.01.002

    • Search Google Scholar
    • Export Citation
  • 23.

    Hösl MBöhm HArampatzis AKeymer ADöderlein L. Contractile behavior of the medial gastrocnemius in children with bilateral spastic cerebral palsy during forward, uphill and backward-downhill gait. Clin Biomech. 2016;36:3239. PubMed ID: 27208665 doi:10.1016/j.clinbiomech.2016.05.008

    • Search Google Scholar
    • Export Citation
  • 24.

    Krans JL. The sliding filament theory of muscle contraction. Nat Educ. 2010;3(9):66.

  • 25.

    Noble MIMPollack GH. Molecular mechanisms of contraction. Circ Res. 1977;40:333342. PubMed ID: 844146 doi:10.1161/01.RES.40.4.333

  • 26.

    Boakes JLForan JWard SRLieber RL. Muscle adaptation by serial sarcomere addition 1 year after femoral lengthening. Clin Orthop Relat Res. 2007;456:250253. PubMed ID: 17065842 doi:10.1097/01.blo.0000246563.58091.af

    • Search Google Scholar
    • Export Citation
  • 27.

    Dayanidhi SLieber RL. Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve. 2014;50(5):723732. PubMed ID: 25186345 doi:10.1002/mus.24441

    • Search Google Scholar
    • Export Citation
  • 28.

    Smith LRChambers HGLieber RL. Reduced satellite cell population may lead to contractures in children with cerebral palsy. Dev Med Child Neurol. 2013;55(3):264270. PubMed ID: 23210987 doi:10.1111/dmcn.12027

    • Search Google Scholar
    • Export Citation
  • 29.

    Kinney MCDayanidhi SDykstra PBMcCarthy JJPeterson CALieber RL. Reduced skeletal muscle satellite cell number alters muscle morphology after chronic stretch but allows limited serial sarcomere addition. Muscle Nerve. 2017;55(3):384392. PubMed ID: 27343167 doi:10.1002/mus.25227

    • Search Google Scholar
    • Export Citation
  • 30.

    Maas HSandercock TG. Force transmission between synergistic skeletal muscles through connective tissue linkages. J Biomed Biotechnol. 2010;2010:575672. PubMed ID: 20396618 doi:10.1155/2010/575672

    • Search Google Scholar
    • Export Citation
  • 31.

    Gillies ARLieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44(3):318331. PubMed ID: 21949456 doi:10.1002/mus.22094

    • Search Google Scholar
    • Export Citation
  • 32.

    van der Krogt MMBar-On LKindt TDesloovere KHarlaar J. Neuro-musculoskeletal simulation of instrumented contracture and spasticity assessment in children with cerebral palsy. J Neuro Eng Rehabil. 2016;13(1):64. doi:10.1186/s12984-016-0170-5

    • Search Google Scholar
    • Export Citation
  • 33.

    Brandenburg JEby SFSong Pet al. Quantifying passive muscle stiffness in children with and without cerebral palsy using ultrasound shear wave elastography. Dev Med Child Neurol. 2016;58(12):12881294. PubMed ID: 27374483 doi:10.1111/dmcn.13179

    • Search Google Scholar
    • Export Citation
  • 34.

    Stackhouse SBinder-Macleod SLee S. Voluntary muscle activation, contractile properties, and fatigability in children with and without cerebral palsy. Muscle Nerve. 2005;31:594601. PubMed ID: 15779003 doi:10.1002/mus.20302

    • Search Google Scholar
    • Export Citation
  • 35.

    Wikipedia Commons. File:Skeletal Muscle.png. National Institute of Health March 222007. https://en.wikipedia.org/wiki/File:Skeletal_muscle.png#filelinksen.wikipedia.org/wiki/.

    • Search Google Scholar
    • Export Citation
  • 36.

    Carranza JCBrennan MJTang B. Sources and propagation of nonlinearity in a vibration isolator with geometrically nonlinear damping. J Vib Acoust. 2016;138:16.

    • Search Google Scholar
    • Export Citation
  • 37.

    Bloch RJGonzalez-Serratos H. Lateral force transmission across costameres in skeletal muscle. Exerc Sport Sci Rev. 2003;31(2):7378. PubMed ID: 12715970 doi:10.1097/00003677-200304000-00004

    • Search Google Scholar
    • Export Citation
  • 38.

    Maas HHuijing PAYucesoy CAKoopman BHGrootenboer HJ. The relative position of EDL muscle affects the length of sarcomeres within muscle fibers: experimental results and finite-element modeling. J Biomech Eng. 2003;125(5):745753. PubMed ID: 14618935 doi:10.1115/1.1615619

    • Search Google Scholar
    • Export Citation
  • 39.

    Chapman MAPichika RLieber RL. Collagen crosslinking does not dictate stiffness in a transgenic mouse model of skeletal muscle fibrosis. J Biomech. 2015;48(2):375378. PubMed ID: 25529136 doi:10.1016/j.jbiomech.2014.12.005

    • Search Google Scholar
    • Export Citation
  • 40.

    Patel TLieber R. Force transmission in skeletal muscle: from actomyosin to external tendons. Exerc Sport Sci Rev. 1997;25:321363. PubMed ID: 9213097 doi:10.1249/00003677-199700250-00014

    • Search Google Scholar
    • Export Citation
  • 41.

    Hughes DCWallace MABaar K. Effects of aging, exercise, and disease on force transfer in skeletal muscle. Am J Physiol Endocrinol Metab. 2015;309:E1E10. PubMed ID: 25968577 doi:10.1152/ajpendo.00095.2015

    • Search Google Scholar
    • Export Citation
  • 42.

    Jayne B. Theory and Design of Wood and Fiber Composite Materials. Syracuse, NY: Syracuse UP; 1972.

  • 43.

    Peng Z. Bio-inspired Studies on Adhesion of a Thin Film on a Rigid Substrate. Berlin, Germany: Springer; 2015.

  • 44.

    Lieber RLSteinman SBarash IAChambers H. Structural and functional changes in spastic skeletal muscle. Muscle Nerve. 2004;29:615627. PubMed ID: 15116365 doi:10.1002/mus.20059

    • Search Google Scholar
    • Export Citation
  • 45.

    Sharan DRajkumar JBalakrishnan RKulkarni A. Ch 7: Neuromusculoskeletal rehabilitation of severe cerebral palsycerebral palsy – current steps. In: Gunel K ed. Neuromuscular Rehabilitation of Severe Cerebral Palsy. Bangalore, Karnataka: RECOUP Neuromusculoskeletal Rehabilitation Centre2016.

    • Search Google Scholar
    • Export Citation
  • 46.

    Sartori MFernandez JWModenese Let al. Toward modeling locomotion using electromyography-informed 3D models: application to cerebral palsy. Wiley Interdiscip Rev Syst Biol Med. 2017;9(2): 616. PubMed ID: 28002649 doi:10.1002/wsbm.1368

    • Search Google Scholar
    • Export Citation
  • 47.

    Sloot LHvan der Krogt MMde Gooijer-van de Groep KLet al. The validity and reliability of modelled neural and tissue properties of the ankle muscles in children with cerebral palsy. Gait Posture. 2015;42(1):715. PubMed ID: 25936760 doi:10.1016/j.gaitpost.2015.04.006

    • Search Google Scholar
    • Export Citation
  • 48.

    Brandenburg JEby SFSong PBamlet WRSieck GCAn KN. Quantifying effect of onabotulinum toxin A on passive muscle stiffness in children with cerebral palsy using ultrasound shear wave elastography. Am J Phys Med Rehabil. 2018;97(7):500506. PubMed ID: 29406405 doi:10.1097/PHM.0000000000000907

    • Search Google Scholar
    • Export Citation
  • 49.

    Nagel SJWilson SJohnson MDet al. Spinal cord stimulation for spasticity: historical approaches, current status, and future directions. Neurolocomotion. 2017;20(4):307321. PubMed ID: 28370802 doi:10.1111/ner.12591

    • Search Google Scholar
    • Export Citation
  • 50.

    Galey SALerner ZFBulea TCZimbler SDamiano DL. Effectiveness of surgical and non-surgical management of crouch gait in cerebral palsy: a systematic review. Gait Posture. 2017;54:93105. PubMed ID: 28279852 doi:10.1016/j.gaitpost.2017.02.024

    • Search Google Scholar
    • Export Citation
  • 51.

    Yucesoy CAHuijing PA. Specifically tailored use of the finite element method to study muscular mechanics within the context of fascial integrity: the linked fiber-matrix Mesh Model. Int J Multiscale Comput Eng. 2012;10(2):155170. doi:10.1615/IntJMultCompEng.2011002356

    • Search Google Scholar
    • Export Citation

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 10 10 10
Full Text Views 0 0 0
PDF Downloads 0 0 0

Altmetric Badge

PubMed

Google Scholar