Does a Perturbation-Based Gait Intervention Enhance Gait Stability in Fall-Prone Stroke Survivors? A Pilot Study

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

A recent review indicated that perturbation-based training (PBT) interventions are effective in reducing falls in older adults and patients with Parkinson’s disease. It is unknown whether this type of intervention is effective in stroke survivors. We determined whether PBT can enhance gait stability in stroke survivors. A total of 10 chronic stroke survivors who experienced falls in the past 6 months participated in the PBT. Participants performed 10 training sessions over a 6-week period. The gait training protocol was progressive, and each training contained unexpected gait perturbations and expected gait perturbations. Evaluation of gait stability was performed by determining steady-state gait characteristics and daily-life gait characteristics. We previously developed fall prediction models for both gait assessment methods. We evaluated whether predicted fall risk was reduced after PBT according to both models. Steady-state gait characteristics significantly improved, and consequently, predicted fall risk was reduced after the PBT. However, daily-life gait characteristics did not change, and thus, predicted fall risk based on daily-life gait remained unchanged after the PBT. A PBT resulted in more stable gait on a treadmill and thus lower predicted fall risk. However, the more stable gait on the treadmill did not transfer to a more stable gait in daily life.

Punt and Wittink are with Research Group Lifestyle and Health, Utrecht University of Applied Sciences, Utrecht, The Netherlands. Punt, Bruijn, and van Dieën are with the Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. Bruijn is with the Department of Orthopedics, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China. van de Port and de Rooij are with Revant Rehabilitation Center Breda, Breda, The Netherlands.

Punt (Michiel.punt@hu.nl) is corresponding author.
Journal of Applied Biomechanics

Article Sections

References

  • 1.

    Hyndman DAshburn AStack E. Fall events among people with stroke living in the community: circumstances of falls and characteristics of fallers. Arch Phys Med Rehabil. 2002;83:165170. PubMed ID: 11833018 doi:10.1053/apmr.2002.28030

    • Search Google Scholar
    • Export Citation
  • 2.

    Weerdesteyn Vde Niet Mvan Duijnhoven HJGeurts AC. Falls in individuals with stroke. J Rehabil Res Dev. 2008;45:11951213. PubMed ID: 19235120 doi:10.1682/JRRD.2007.09.0145

    • Search Google Scholar
    • Export Citation
  • 3.

    Ramnemark ANilsson MBorssén BGustafson Y. Stroke, a major and increasing risk factor for femoral neck fracture. Stroke. 2000;31:15721577. PubMed ID: 10884456 doi:10.1007/s00113-014-2729-6

    • Search Google Scholar
    • Export Citation
  • 4.

    Sherrington CTiedemann AFairhall NClose JCLord SR. Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations. N S W Public Health Bull. 2011;22(4):7883. PubMed ID: 21632004 doi:10.1071/NB10056

    • Search Google Scholar
    • Export Citation
  • 5.

    Verheyden GSWeerdesteyn VPickering RMet al. Interventions for preventing falls in people after stroke (Review). COCHRANE Collab. 2013;(5):CD008728.

    • Search Google Scholar
    • Export Citation
  • 6.

    Bruijn SMMeijer OGBeek PJvan Dieën JH. Assessing the stability of human locomotion: a review of current measures. J R Soc Interface. 2013;10:20120999. PubMed ID: 23516062 doi:10.1098/rsif.2012.0999

    • Search Google Scholar
    • Export Citation
  • 7.

    Mansfield AWong JSBryce JKnorr SPatterson KK. Does perturbation-based balance training prevent falls? Systematic review and meta-analysis of preliminary randomized controlled trials. Phys Ther. 2015;95(5):700709. PubMed ID: 25524873 doi:10.2522/ptj.20140090

    • Search Google Scholar
    • Export Citation
  • 8.

    Baetens TDe Kegel ACalders PVanderstraeten GCambier D. Prediction of falling among stroke patients in rehabilitation. J Rehabil Med. 2011;43:876883. PubMed ID: 21947179 doi:10.2340/16501977-0873

    • Search Google Scholar
    • Export Citation
  • 9.

    Punt MBruijn SMWittink Hvan de Port IGvan Dieën J. Do clinical assessments, steady-state or daily-life gait characteristics predict falls in ambulatory chronic stroke survivors? J Rehabil Med. 2017;49:402409. PubMed ID: 28475196 doi:10.2340/16501977-2234

    • Search Google Scholar
    • Export Citation
  • 10.

    Punt MBruijn SMRoeles Svan de Port IGWittink Hvan Dieën JH. Responses to gait perturbations in stroke survivors who prospectively experienced falls or no falls. J Biomech. 2017;55:5663. PubMed ID: 28267989 doi:10.1016/j.jbiomech.2017.02.010

    • Search Google Scholar
    • Export Citation
  • 11.

    Holden MKGill KMMagliozzi MRNathan JPiehl-Baker L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys Ther. 1984;64:3540. PubMed ID: 6691052 doi:10.1093/ptj/64.1.35

    • Search Google Scholar
    • Export Citation
  • 12.

    Guadagnoli MALee TD. Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav. 2004;36(2):212224. PubMed ID: 5130871 doi:10.3200/JMBR.36.2.212-224

    • Search Google Scholar
    • Export Citation
  • 13.

    Pohl MMehrholz JRitschel CRückriem S. Speed-dependent treadmill training in ambulatory hemiparetic stroke patients. Stroke. 2002;33(2):553558. PubMed ID: 11823669 doi:10.1161/hs0202.102365

    • Search Google Scholar
    • Export Citation
  • 14.

    Roerdink MCoolen BHClairbois BHLamoth CJBeek PJ. Online gait event detection using a large force platform embedded in a treadmill. J Biomech. 2008;41:26282632. PubMed ID: 18657816 doi:10.1016/j.jbiomech.2008.06.023

    • Search Google Scholar
    • Export Citation
  • 15.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

    • Search Google Scholar
    • Export Citation
  • 16.

    Punt MBruijn SMvan Schooten KSet al. Characteristics of daily life gait in fall and non fall-prone stroke survivors and controls. J Neuroeng Rehabil. 2016;13:67. PubMed ID: 27460021 doi:10.1186/s12984-016-0176-z

    • Search Google Scholar
    • Export Citation
  • 17.

    Kang HGDingwell JB. Separating the effects of age and walking speed on gait variability. Gait Posture. 2008;27(4):572577. PubMed ID: 17768055 doi:10.1016/j.gaitpost.2007.07.009

    • Search Google Scholar
    • Export Citation
  • 18.

    Tyrell CMRoos MARudolph KSReisman DS. Influence of systematic increases in treadmill walking speed on gait kinematics after stroke. Phys Ther. 2011;91(3):392403. PubMed ID: 21252308 doi:10.2522/ptj.20090425

    • Search Google Scholar
    • Export Citation
  • 19.

    Viccaro LJPerera SStudenski SA. Is timed up and go better than gait speed in predicting health, function, and falls in older adults? J Am Geriatr Soc. 2011;59(5):887892. PubMed ID: 21410448 doi:10.1111/j.1532-5415.2011.03336.x

    • Search Google Scholar
    • Export Citation
  • 20.

    Punt Mvan Alphen Bvan de Port IGet al. Clinimetric properties of a novel feedback device for assessing gait parameters in stroke survivors. J Neuroeng Rehabil. 2014;11:30. PubMed ID: 24597594 doi:10.1186/1743-0003-11-30

    • Search Google Scholar
    • Export Citation
  • 21.

    van Schooten KSPijnappels MRispens SMElders PJLips Pvan Dieën JH. Ambulatory fall-risk assessment: amount and quality of daily-life activities predict falls in older adults. J Gerontol A Biol Sci Med Sci. 2015;70:608615. PubMed ID: 25568095 doi:10.1093/gerona/glu225

    • Search Google Scholar
    • Export Citation
  • 22.

    Rispens SMvan Schooten KSPijnappels MDaffertshofer ABeek PJvan Dieën JH. Identification of fall risk predictors in daily life measurements: gait characteristics’ reliability and association with self-reported fall history. Neurorehabil Neural Repair. 2014;29(1):5461. PubMed ID: 24759809 doi:10.1177/1545968314532031

    • Search Google Scholar
    • Export Citation
  • 23.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 24.

    Klamroth SSteib SGaßner Het al. Immediate effects of perturbation treadmill training on gait and postural control in patients with Parkinson’s disease. Gait Posture. 2016;50:102108. PubMed ID: 27591395 doi:10.1016/j.gaitpost.2016.08.020

    • Search Google Scholar
    • Export Citation
  • 25.

    Punt MBruijn SMWittink Hvan Dieën JH. Effect of arm swing strategy on local dynamic stability of human gait. Gait Posture. 2015;41(2):504509. PubMed ID: 25582804 doi:10.1016/j.gaitpost.2014.12.002

    • Search Google Scholar
    • Export Citation
  • 26.

    Pai YCBhatt T. Repeated-slip training: an emerging paradigm for prevention of slip-related falls among older adults. Phys Ther. 2007;87(11):14781491. PubMed ID: 17712033 doi:10.2522/ptj.20060326

    • Search Google Scholar
    • Export Citation
  • 27.

    Punt MBruijn SMWittink Hvan de Port IGWubbels Gvan Dieën JH. Virtual obstacle crossing: reliability and differences in stroke survivors who prospectively experienced falls or no falls. Gait Posture. 2017;58:533538. PubMed ID: 28963980 doi:10.1016/j.gaitpost.2017.09.013

    • Search Google Scholar
    • Export Citation
  • 28.

    Heeren Avan Ooijen MWGeurts ACet al. Step by step: a proof of concept study of C-Mill gait adaptability training in the chronic phase after stroke. J Rehabil Med. 2013;45(7):616622. PubMed ID: 23811818 doi:10.2340/16501977-1180

    • Search Google Scholar
    • Export Citation
  • 29.

    van Ooijen MWHeeren ASmulders Ket al. Improved gait adjustments after gait adaptability training are associated with reduced attentional demands in persons with stroke. Exp Brain Res. 2015;233(3):10071018. PubMed ID: 25537466 doi:10.1007/s00221-014-4175-7

    • Search Google Scholar
    • Export Citation

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 67 67 67
Full Text Views 4 4 4
PDF Downloads 4 4 4

Altmetric Badge

PubMed

Google Scholar