The Effects of Data Padding Techniques on Continuous Relative-Phase Analysis Using the Hilbert Transform

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Continuous relative phase (CRP) analysis using the Hilbert transform is prone to end effects. The purpose was to investigate the impact of padding techniques (reflection, spline extrapolation, extraneous data, and unpadded) on end effects following Hilbert-transformed CRP calculations, using sinusoidal, nonsinusoidal, and kinematic data from a repeated sit-to-stand-to-sit task in adults with low back pain (n = 16, mean age = 30 y). CRP angles were determined using a Hilbert transform of sinusoidal and nonsinusoidal signals with set phase shifts, and for the left thigh/sacrum segments. Root mean square difference and true error compared test signals with a gold standard, for the start, end, and full periods, for all data. Mean difference and 95% bootstrapped confidence intervals were calculated to compare padding techniques using kinematic data. The unpadded approach showed near-negligible error using sinusoidal data across all periods. No approach was clearly superior for nonsinusoidal data. Spline extrapolation showed significantly less root mean square difference (all periods) when compared with double reflection (full period: mean difference = 2.11; 95% confidence interval, 1.41 to 2.79) and unpadded approaches (full period: mean difference = −15.8; 95% confidence interval, −18.9 to −12.8). Padding sinusoidal data when performing CRP analyses are unnecessary. When extraneous data have not been collected, our findings recommend padding using a spline to minimize data distortion following Hilbert-transformed CRP analyses.

The authors are with the School of Physical & Occupational Therapy, McGill University, Montreal, Québec, Canada; and the Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Constance Lethbridge Rehabilitation Centre, Montreal, Québec, Canada.

Ippersiel (Patrick.Ippersiel@mail.mcgill.ca) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Hamill Jvan Emmerik REHeiderscheit BCLi L. A dynamical systems approach to lowerextremity running injuries. Clin Biomech. 1999;14(5):297308. doi:10.1016/S0268-0033(98)90092-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Lamb PFStöckl M. On the use of continuous relative phase: review of current approaches and outline for a new standard. Clin Biomech. 2014;29(5):484493. doi:10.1016/j.clinbiomech.2014.03.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Feldman M. Signal demodulation. In: Hoboken N.J. ed. Hilbert Transform Applications in Mechanical Vibration. John Wiley & Sons; 2011:2332.

  • 4.

    Wu ZHuang NE. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal. 2009;01(01):141. doi:10.1142/S1793536909000047

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Huang DZhao JSu J. Practical implementation of the Hilbert–Huang transform algorithm. Acta Oceanol Sin. 2003;25(1):111.

  • 6.

    Huang NEShen ZLong SRet al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Math Phys Eng Sci. 1998;454(1971):903995. doi:10.1098/rspa.1998.0193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Smith G. Padding point extrapolation techniques for the Butterworth digital filter. J Biomech. 1989;22(8–9):967971. doi:10.1016/0021-9290(89)90082-1

  • 8.

    Vint PFHinrichs RN. Endpoint error in smoothing and differentiating raw kinematic data: an evaluation of four popular methods. J Biomech. 1996;29(12):16371642. PubMed ID: 8945665 doi:10.1016/S0021-9290(96)80018-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Howarth SJCallaghan JP. The rule of 1s for padding kinematic data prior to digital filtering: influence of sampling and filter cutoff frequencies. J Electromyogr Kinesiol. 2009;19(5):875881. PubMed ID: 18462952 doi:10.1016/j.jelekin.2008.03.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ippersiel PRobbins SPreuss R. Movement variability in adults with low back pain during sit-to-stand-to-sit. Clin Biomech. 2018;58:9095. doi:10.1016/j.clinbiomech.2018.07.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Peters BTHaddad JMHeiderscheit BCVan Emmerik REHamill J. Limitations in the use and interpretation of continuous relative phase. J Biomech. 2003;36(2):271274. PubMed ID: 12547366 doi:10.1016/S0021-9290(02)00341-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    McKenzie DPMackinnon AJPeladeau Net al. Comparing correlated kappas by resampling: is one level of agreement significantly different from another? J Psychiatr Res. 1996;30(6):483492. PubMed ID: 9023792 doi:10.1016/S0022-3956(96)00033-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Klingspor M. Hilbert Transform: Mathematical Theory and Applications to Signal Processing [master’s thesis]. Linköping, Sweden: Linköping University; 2015.

    • Search Google Scholar
    • Export Citation
  • 14.

    Varlet MRichardson MJ. Computation of continuous relative phase and modulation of frequency of human movement. J Biomech. 2011;44(6):12001204. PubMed ID: 21329929 doi:10.1016/j.jbiomech.2011.02.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Zehr JDHowarth SJBeach TAC. Using relative phase analyses and vector coding to quantify pelvis-thorax coordination during lifting-a methodological investigation. J Electromyogr Kinesiol. 2018;39:104113. PubMed ID: 29482083 doi:10.1016/j.jelekin.2018.02.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Lamoth CJDaffertshofer AHuys RBeek PJ. Steady and transient coordination structures of walking and running. Hum Mov Sci. 2009;28(3):371386. PubMed ID: 19027972 doi:10.1016/j.humov.2008.10.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 133 133 94
Full Text Views 15 15 7
PDF Downloads 13 13 5
Altmetric Badge
PubMed
Google Scholar