Identification of Postconcussion Dual-Task Gait Abnormalities Using Normative Reference Values

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

The purpose of this study was to identify the rate of abnormal single-task and dual-task gait performance following concussion compared to uninjured controls using previously established normative reference values. The authors examined athletes with a concussion (n = 54; mean age = 20.3 [1.1] y, 46% female, tested 2.9 [1.5] d postinjury), and healthy controls were tested during their preseason baseline examination (n = 60; mean age = 18.9 [0.7] y, 37% female). Participants completed an instrumented single-/dual-task gait evaluation. Outcome variables included average walking speed, cadence, and step length. A significantly greater number of those with concussion walked with abnormal dual-task gait speed compared with the control group (56% vs 30%, P = .01). After adjusting for potential confounding variables (age, concussion history, symptom severity, and sleep), concussion was associated with lower dual-task gait speed (β = −0.150; 95% confidence interval [CI] = −0.252 to −0.047), cadence (β = −8.179; 95% CI = −14.49 to −1.871), and stride length (β = −0.109; 95% CI = −0.204 to −0.014). Although group analyses indicated that those with a concussion performed worse on single-task and dual-task gait compared with controls, a higher rate of abnormal gait was detected for the concussion group compared with the control group for dual-task gait speed only. Dual-task gait speed, therefore, may be considered as a measure to compare against normative values to detect postconcussion impairments.

Howell is with Sports Medicine Center, Children’s Hospital Colorado, Aurora, CO, USA; and the Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA. Howell and Meehan are with The Micheli Center for Sports Injury Prevention, Waltham, MA, USA. Buckley is with the Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA; and the Interdisciplinary Program in Biomechanics and Movement Science, University of Delaware, Newark, DE, USA. Berkstresser and Wang are with Harvard University Health Service, Cambridge, MA, USA. Meehan is also with the Division of Sports Medicine, Department of Orthopaedics, Boston Children’s Hospital, Boston, MA, USA; and the Department of Pediatrics, Harvard Medical School, Boston, MA, USA.

Howell (David.Howell@ucdenver.edu) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Broglio SPPuetz TW. The effect of sport concussion on neurocognitive function, self-report symptoms and postural control: a meta-analysis. Sports Med. 2008;38(1):5367. PubMed ID: 18081367 doi:10.2165/00007256-200838010-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    McCrory PMeeuwisse WDvorak Jet al. Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51(11):838847. PubMed ID: 28446457 doi:10.1136/bjsports-2017-097699

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Baugh CMKroshus EStamm JMDaneshvar DHPepin MJMeehan WP. Clinical practices in collegiate concussion management. Am J Sports Med. 2016;44(6):13911399. PubMed ID: 27037282 doi:10.1177/0363546516635639

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Winter D. Human balance and posture control during standing and walking. Gait Posture. 1995;3(4):193214. doi:10.1016/0966-6362(96)82849-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Howell DRLynall RCBuckley TAHerman DC. Neuromuscular control deficits and the risk of subsequent injury after a concussion: a scoping review. Sports Med. 2018;48(5):10971115. doi:10.1007/s40279-018-0871-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Grants LPowell BGessel CHiser FHassen A. Gait deficits under dual-task conditions in the concussed adolescent and young athlete population: a systematic review. Int J Sports Phys Ther. 2017;12(7):10111022. PubMed ID: 29234553 doi:10.26603/ijspt20171011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Kleiner MWong LDubé AWnuk KHunter SWGraham LJ. Dual-task assessment protocols in concussion assessment: a systematic literature review. J Orthop Sports Phys Ther. 2018;48(2):87103. doi:10.2519/jospt.2018.7432

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Manaseer TSGross DPDennett LSchneider KWhittaker JL. Gait deviations associated with concussion: a systematic review [published online ahead of print November 21 2017]. Clin J Sport Med. PubMed ID: 29194058 doi:10.1097/JSM.0000000000000537

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Howell DROsternig LRChou L-S. Adolescents demonstrate greater gait balance control deficits after concussion than young adults. Am J Sports Med. 2015;43(3):625632. PubMed ID: 25540297 doi:10.1177/0363546514560994

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Howell DROsternig LRChou LS. Detection of acute and long-term effects of concussion: dual-task gait balance control vs computerized neurocognitive test. Arch Phys Med Rehabil. 2018;99(7):13181324. PubMed ID: 29457997 doi:10.1016/j.apmr.2018.01.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hänninen TParkkari JTuominen Met al. Sport concussion assessment tool: interpreting day-of-injury scores in professional ice hockey players. J Sci Med Sport. 2018;21(8):794799. doi:10.1016/j.jsams.2017.12.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Schmidt JDRegister-Mihalik JKMihalik JPKerr ZYGuskiewicz KM. Identifying Impairments after concussion: normative data versus individualized baselines. Med Sci Sports Exerc. 2012;44(9):16211628. PubMed ID: 22525765 doi:10.1249/MSS.0b013e318258a9fb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Howell DROldham JRDiFabio Met al. Single-task and dual-task gait among collegiate athletes of different sport classifications: implications for concussion management. J Appl Biomech. 2017;33(1):2431. PubMed ID: 27705076 doi:10.1123/jab.2015-0323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Poltavski DLederer PCox LK. Visually evoked potential markers of concussion history in patients with convergence insufficiency. Optom Vis Sci. 2017;94(7):742750. PubMed ID: 28609417 doi:10.1097/OPX.0000000000001094

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Howell DRStillman ABuckley TABerkstresser BWang FMeehan WP. The utility of instrumented dual-task gait and tablet-based neurocognitive measurements after concussion. J Sci Med Sport. 2018;21(4):358362. PubMed ID: 28919121 doi:10.1016/j.jsams.2017.08.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Echemendia RJMeeuwisse WMcCrory Pet al. The Sport Concussion Assessment Tool 5th Edition (SCAT5). Br J Sports Med. 2017;51:895901. PubMed ID: 28446453 doi:10.1136/bjsports-2016-097466

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Howell DRBrilliant ABerkstresser BWang FFraser JMeehan W. The association between dual-task gait after concussion and prolonged symptom duration. J Neurotrauma. 2017;34(23):32883294. PubMed ID: 28895490 doi:10.1089/neu.2017.5191

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Lovell MRIverson GLCollins MWet al. Measurement of symptoms following sports-related concussion: reliability and normative data for the post-concussion scale. Appl Neuropsychol. 2006;13(3):166174. PubMed ID: 17361669 doi:10.1207/s15324826an1303_4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Howell DRO’Brien MJBeasley MAMannix RCMeehan WP. Initial somatic symptoms are associated with prolonged symptom duration following concussion in adolescents. Acta Paediatr. 2016;105(9):e426e432. PubMed ID: 27230721 doi:10.1111/apa.13486

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Meehan WPMannix RCMonuteaux MCStein CJBachur RG. Early symptom burden predicts recovery after sport-related concussion. Neurology. 2014;83(24):22042210. PubMed ID: 25381296 doi:10.1212/WNL.0000000000001073

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Howell DRStracciolini AGeminiani EMeehan III WP. Dual-task gait differences in female and male adolescents following sport-related concussion. Gait Posture. 2017;54:284289. PubMed ID: 28384609 doi:10.1016/j.gaitpost.2017.03.034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Howell DRBeasley MVopat LMeehan W. The effect of prior concussion history on dual-task gait following a concussion. J Neurotrauma. 2017;34(4):838844. PubMed ID: 27541061 doi:10.1089/neu.2016.4609

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Guskiewicz KMRegister-Mihalik JK. Postconcussive impairment differences across a multifaceted concussion assessment protocol. PM R. 2011;3(10 suppl 2):S445S451. PubMed ID: 22035688 doi:10.1016/j.pmrj.2011.08.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Garcia GPBroglio SPLavieri MSMcCrea MMcAllister TCARE Consortium Investigators. Quantifying the value of multidimensional assessment models for acute concussion: an analysis of data from the NCAA-DoD care consortium. Sports Med. 2018;48(7):17391749. doi:10.1007/s40279-018-0880-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Putukian MEchemendia RDettwiler-Danspeckgruber Aet al. Prospective clinical assessment using sideline concussion assessment tool-2 testing in the evaluation of sport-related concussion in college athletes. Clin J Sport Med. 2015;25(1):3642. PubMed ID: 24915173 doi:10.1097/JSM.0000000000000102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Buckley TAMunkasy BAClouse BP. Sensitivity and specificity of the modified balance error scoring system in concussed collegiate student athletes. Clin J Sport Med. 2018;28(2):174176. PubMed ID: 28454123 doi:10.1097/JSM.0000000000000426

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Berkner JMeehan WPMaster CLHowell DR. Gait and quiet-stance performance among adolescents after concussion symptom resolution. J Athl Train. 2017;52(12):10891095. PubMed ID: 29154694 doi:10.4085/1062-6050-52.11.23

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Howell DROsternig LRChou L-S. Return to activity after concussion affects dual-task gait balance control recovery. Med Sci Sports Exerc. 2015;47(4):673680. PubMed ID: 25100340 doi:10.1249/MSS.0000000000000462

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Howell DRBuckley TALynall RCMeehan III WP. Worsening dual-task gait costs after concussion and their association with subsequent sport-related injury. J Neurotrauma. 2018;35(14):16301636. PubMed ID: 29490564 doi:10.1089/neu.2017.5570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Oldham JRDiFabio MSKaminski TWDeWolf RMHowell DRBuckley TA. Efficacy of tandem gait to identify impaired postural control following concussion. Med Sci Sports Exerc. 2018;50(6):11621168. PubMed ID: 29315170 doi:10.1249/MSS.0000000000001540

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    McDevitt JAppiah-Kubi KOTierney RWright WG. Vestibular and oculomotor assessments may increase accuracy of subacute concussion assessment. Int J Sports Med. 2016;37(9):738747. PubMed ID: 27176886 doi:10.1055/s-0042-100470

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Studenski SPerera SWallace Det al. Physical performance measures in the clinical setting. J Am Geriatr Soc. 2003;51(3):314322. PubMed ID: 12588574 doi:10.1046/j.1532-5415.2003.51104.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Sullivan KABerndt SLEdmed SLSmith SSAllan AC. Poor sleep predicts subacute postconcussion symptoms following mild traumatic brain injury. Appl Neuropsychol Adult. 2016;23(6):426435. PubMed ID: 27183274 doi:10.1080/23279095.2016.1172229

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Bramley HHenson ALewis MMKong LStetter CSilvis M. Sleep disturbance following concussion is a risk factor for a prolonged recovery. Clin Pediatr. 2017;56(14):12801285. doi:10.1177/0009922816681603

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 141 141 54
Full Text Views 18 18 15
PDF Downloads 15 15 12
Altmetric Badge
PubMed
Google Scholar