Unintended Changes in Contralateral Limb as a Result of Acute Gait Modification

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Gait modification using real-time biofeedback is a conservative intervention associated with positive outcomes. Results from systematic reviews corroborate the effectiveness of various strategies employing real-time biofeedback for reducing estimated knee joint load. The effects on the nonmodified limb, however, remain unclear. Biomechanical changes to the nonmodified limb were investigated during unilaterally implemented medial knee thrust, lateral trunk lean, and toe-in foot progression. Nineteen healthy participants were recruited. Ten trials were completed for each gait condition including baseline. Assigned magnitude for each gait modification strategy was individualized based on the mean and SD of the gait parameter during baseline. Visual real-time biofeedback was provided. During medial knee thrust, participants’ nonmodified limb presented with increased: first peak medial knee contact force, internal first peak knee extensor moment, as well as knee- and hip-flexion angles at internal first peak knee extensor moment. Observed biomechanical changes are elucidative of the body’s attempt to attenuate increased external loads. These findings may carry significant implications for pathological populations. Load redistribution to the nonmodified side may result in unfavorable long-term outcomes particularly in patients with bilateral diagnosis. Future studies should explore acute and chronic changes in the nonmodified limb of individuals with knee osteoarthritis.

Eddo, Lindsey, Caswell, Prebble, and Cortes are with the Sports Medicine Assessment, Research & Testing (SMART) Laboratory; and the School of Kinesiology; George Mason University, Manassas, VA, USA. Cortes is also with the Department of Bioengineering, George Mason University, Fairfax, VA, USA.

Cortes (ncortes@gmu.edu) is corresponding author.
  • 1.

    Murphy LB, Cisternas MG, Pasta DJ, Helmick CG, Yelin EH. Medical expenditures and earnings losses among US adults with arthritis in 2013. Arthritis Care Res. 2018;70(6):869876. doi:10.1002/acr.23425

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Hootman JM, Helmick CG, Barbour KE, Theis KA, Boring MA. Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among US adults, 2015–2040. Arthritis Rheumatol. 2016;68(7):15821587. PubMed ID: 27015600 doi:10.1002/art.39692

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Neogi T, Zhang Y. Epidemiology of osteoarthritis. Clin Geriatr Med. 2013;39(1):119.

  • 4.

    Günther KP, Stürmer T, Sauerland S, et al. Prevalence of generalised osteoarthritis in patients with advanced hip and knee osteoarthritis: the Ulm Osteoarthritis Study. Ann Rheum Dis. 1998;57(12):717723. doi:10.1136/ard.57.12.717

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Creaby MW, Bennell KL, Hunt MA. Gait differs between unilateral and bilateral knee osteoarthritis. Arch Phys Med Rehabil. 2012;93(5):822827. PubMed ID: 22385873 doi:10.1016/j.apmr.2011.11.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Amin S, Luepongsak N, McGibbon CA, LaValley MP, Krebs DE, Felson DT. Knee adduction moment and development of chronic knee pain in elders. Arthritis Rheum. 2004;51(3):371376. PubMed ID: 15188321 doi:10.1002/art.20396

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Simon D, Mascarenhas R, Saltzman BM, Rollins M, Bach BR, MacDonald P. The relationship between anterior cruciate ligament injury and osteoarthritis of the knee. Adv Orthop. 2015;2015:111. PubMed ID: 25954533 doi:10.1155/2015/928301

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Foroughi N, Smith R, Vanwanseele B. The association of external knee adduction moment with biomechanical variables in osteoarthritis: a systematic review. Knee. 2009;16(5):303309. PubMed ID: 19321348 doi:10.1016/j.knee.2008.12.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Chehab EF, Favre J, Erhart-Hledik JC, Andriacchi TP. Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis. Osteoarthritis Cartilage. 2014;22(11):18331839. doi:10.1016/j.joca.2014.08.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hurwitz DE, Ryals AB, Case JP, Block JA, Andriacchi TP. The knee adduction moment during gait in subjects with knee osteoarthritis is more closely correlated with static alignment than radiographic disease severity, toe out angle and pain. J Orthop Res. 2002;20(1):101107. PubMed ID: 11853076 doi:10.1016/S0736-0266(01)00081-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Zhao D, Banks SA, Mitchell KH, D’Lima DD, Colwell CW, Fregly BJ. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J Orthop Res. 2007;25(6):789797. PubMed ID: 17343285 doi:10.1002/jor.20379

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Eddo O, Lindsey B, Caswell SV, Cortes N. Current evidence of gait modification with real-time biofeedback to alter kinetic, temporospatial, and function-related outcomes: a review. IJKSS. 2017;5(3):3555. doi:10.7575/aiac.ijkss.v.5n.3p.35

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Mündermann A, Asay JL, Mündermann L, Andriacchi TP. Implications of increased medio-lateral trunk sway for ambulatory mechanics. J Biomech. 2008;41(1):165170. doi:10.1016/j.jbiomech.2007.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hunt MA, Birmingham TB, Bryant D, et al. Lateral trunk lean explains variation in dynamic knee joint load in patients with medial compartment knee osteoarthritis. Osteoarthritis Cartilage. 2008;16(5):591599. doi:10.1016/j.joca.2007.10.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Fregly BJ, Reinbolt JA, Rooney KL, Mitchell KH, Chmielewski TL. Design of patient-specific gait modifications for knee osteoarthritis rehabilitation. IEEE Trans Biomed Eng. 2007;54(9):16871695. PubMed ID: 17867361 doi:10.1109/TBME.2007.891934

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Barrios JA, Crossley KM, Davis IS. Gait retraining to reduce the knee adduction moment through real-time visual feedback of dynamic knee alignment. J Biomech. 2010;43(11):22082213. PubMed ID: 20452595 doi:10.1016/j.jbiomech.2010.03.040

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Richards RE, van den Noort JC, van der Esch M, Booij MJ, Harlaar J. Effect of real-time biofeedback on peak knee adduction moment in patients with medial knee osteoarthritis: is direct feedback effective? Clin Biomech. 2018;57:150158. doi:10.1016/j.clinbiomech.2017.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Shull PB, Shultz R, Silder A, et al. Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis. J Biomech. 2013;46(1):122128. PubMed ID: 23146322 doi:10.1016/j.jbiomech.2012.10.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Uhlrich SD, Silder A, Beaupre GS, Shull PB, Delp SL. Subject-specific toe-in or toe-out gait modifications reduce the larger knee adduction moment peak more than a non-personalized approach. J Biomech. 2018;66:103110. PubMed ID: 29174534 doi:10.1016/j.jbiomech.2017.11.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Walter JP, D’Lima DD, Colwell CW, Fregly BJ. Decreased knee adduction moment does not guarantee decreased medial contact force during gait. J Orthop Res. 2010;28(10):13481354. PubMed ID: 20839320 doi:10.1002/jor.21142

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Charlton JM, Krowchuk NM, Hatfield GL, Guenette JA, Hunt MA. Non-modified limb foot rotation during unilateral toe-in or toe-out walking in people with knee osteoarthritis. Gait Posture. 2018;62:132134. PubMed ID: 29547793 doi:10.1016/j.gaitpost.2018.03.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Zhang W, Moskowitz RW, Nuki G, et al. OARSI recommendations for the management of hip and knee osteoarthritis, part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthritis Cartilage. 2007;15(9):9811000. doi:10.1016/j.joca.2007.06.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cortes N, Quammen D, Lucci S, Greska E, Onate J. A functional agility short-term fatigue protocol changes lower extremity mechanics. J Sports Sci. 2012;30(8):797805. PubMed ID: 22424559 doi:10.1080/02640414.2012.671528

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Schwartz MH, Rozumalski A. A new method for estimating joint parameters from motion data. J Biomech. 2005;38(1):107116. PubMed ID: 15519345 doi:10.1016/j.jbiomech.2004.03.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lu TW, O’Connor JJ. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J Biomech. 1999;32(2):129134. PubMed ID: 10052917 doi:10.1016/S0021-9290(98)00158-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res. 1989;7(6):849860. PubMed ID: 2795325 doi:10.1002/jor.1100070611

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Dempster WT. Space Requirements of the Seated Operator, Geometrical, Kinematic, and Mechanical Aspects of the Body With Special Reference to the Limbs. East Lansing, MI: Michigan State University; 1955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Winter DA. Biomechanics and Motor Control of Human Movement. Hoboken, NJ: John Wiley & Sons; 2009.

  • 29.

    Greska EK, Cortes N, Ringleb SI, Onate JA, Van Lunen BL. Biomechanical differences related to leg dominance were not found during a cutting task. Scand J Med Sci Sports. 2017;27(11):13281336. doi:10.1111/sms.12776

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Simic M, Wrigley TV, Hinman RS, Hunt MA, Bennell KL. Altering foot progression angle in people with medial knee osteoarthritis: the effects of varying toe-in and toe-out angles are mediated by pain and malalignment. Osteoarthritis Cartilage. 2013;21(9):12721280. doi:10.1016/j.joca.2013.06.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965;52(3/4):591611. doi:10.2307/2333709

  • 32.

    Mündermann A, Dyrby CO, Andriacchi TP. Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee, and hip during walking. Arthritis Rheum. 2005;52(9):28352844. doi:10.1002/art.21262

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 219 219 13
Full Text Views 23 23 0
PDF Downloads 13 13 0