Attenuation of Lower Body Acceleration in Overweight and Healthy-Weight Children During Running

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

This study aimed to identify differences in ground impact shock attenuation between overweight and healthy-weight children during running. Twenty overweight children aged 8.4 (1.1) years and 12 healthy-weight children aged 10.7 (1.3) years ran on a treadmill (120% of baseline speed) while wearing 2 inertial sensors located on their distal tibia and lower back (L3). Peak acceleration attenuation coefficient at foot contact and transfer function of the acceleration were calculated. Peak positive acceleration values were not significantly different between the overweight children and healthy-weight children (3.98 [1.17] g and 3.71 [0.84] g, respectively, P = .49). Children with healthy weight demonstrated significant greater attenuation as evident by greater peak acceleration attenuation coefficient (35.4 [19.3] and 11.9 [27.3], respectively, P < .05) and lower transfer function of the acceleration values (−3.8 [1.9] and −1.2 [1.5], respectively, P < .05). Despite the nonsignificant differences between groups in tibia acceleration at foot–ground impact that was found in the current study, the shock absorption of overweight children was reduced compared with their healthy-weight counterparts.

Tirosh is with the School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia. Orland and Steinberg are with the Wingate Academic College of Physical Education and Sports Sciences, Netanya, Israel. Eliakim and Nemet are with the Health and Sport Center, Pediatric Department, Meir Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

Steinberg (knopp@wincol.ac.il) is corresponding author.
  • 1.

    Munro CF, Miller DI, Fuglevand AJ. Ground reaction forces in running: a reexamination. J Biomech. 1987;20(2):147155. PubMed ID: 3571295 doi:10.1016/0021-9290(87)90306-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Kavanagh JJ, Menz HB. Accelerometry: a technique for quantifying movement patterns during walking. Gait Posture. 2008;28(1):115. PubMed ID: 18178436 doi:10.1016/j.gaitpost.2007.10.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Mercer JA, Vance J, Hreljac A, Hamill J. Relationship between shock attenuation and stride length during running at different velocities. Eur J Appl Physiol. 2002;87(4–5):403408. doi:10.1007/s00421-002-0646-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Clarke TE, Cooper LB, Hamill CL, Clark DE. The effect of varied stride rate upon shank deceleration in running. J Sports Sci. 1985;3(1):4149. PubMed ID: 4094019 doi:10.1080/02640418508729731

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Derrick TR, Hamill J, Caldwell GE. Energy absorption of impacts during running at various stride lengths. Med Sci Sports Exerc. 1998;30(1):128135. doi:10.1097/00005768-199801000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Shorten MR, Winslow DS. Spectral-analysis of impact shock during running. Int J Sport Biomech. 1992;8(4):288304. doi:10.1123/ijsb.8.4.288

  • 7.

    Mercer JA, Dufek JS, Mangus BC, Rubley MD, Bhanot K, Aldridge JM. A description of shock attenuation for children running. J Athl Train. 2010;45(3):259264. PubMed ID: 20446839 doi:10.4085/1062-6050-45.3.259

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Steinberg N, Nemet D, Pantanowitz M, Eliakim A. Gait pattern, impact to the skeleton and postural balance in overweight and obese children: a review. Sports. 2018;6(3):E75. doi:10.3390/sports6030075

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    de Luca KE, Parkinson L, Haldeman S, Byles JE, Blyth F. The relationship between spinal pain and comorbidity: a cross-sectional analysis of 579 community-dwelling, older Australian women. J Manipulative Physiol Ther. 2017;40(7):459466. PubMed ID: 29037787 doi:10.1016/j.jmpt.2017.06.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Browning RC, Kram R. Effects of obesity on the biomechanics of walking at different speeds. Med Sci Sports Exerc. 2007;39(9):16321641. PubMed ID: 17805097 doi:10.1249/mss.0b013e318076b54b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Haight DJ, Lerner ZF, Board WJ, Browning RC. A comparison of slow, uphill and fast, level walking on lower extremity biomechanics and tibiofemoral joint loading in obese and nonobese adults. J Orthop Res. 2014;32(2):324330. PubMed ID: 24127395 doi:10.1002/jor.22497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Horsak B, Artner D, Baca A, et al. The effects of a strength and neuromuscular exercise programme for the lower extremity on knee load, pain and function in obese children and adolescents: study protocol for a randomised controlled trial. Trials. 2015;16(1):586. PubMed ID: 26700568 doi:10.1186/s13063-015-1091-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Sundin BA, Moreno E, Neher JO, St Anna L. FPIN’s clinical inquiries. Obesity and joint injuries in children. Am Fam Physician. 2015;91(5):320322. PubMed ID: 25822388

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Tsiros MD, Buckley JD, Howe PR, Walkley J, Hills AP, Coates AM. Musculoskeletal pain in obese compared with healthy-weight children. Clin J Pain. 2014;30(7):583588. PubMed ID: 24281282

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    McGraw B, McClenaghan BA, Williams HG, Dickerson J, Ward DS. Gait and postural stability in obese and nonobese prepubertal boys. Arch Phys Med Rehabil. 2000;81(4):484489. PubMed ID: 10768540 doi:10.1053/mr.2000.3782

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Mickle KJ, Steele JR, Munro BJ. Does excess mass affect plantar pressure in young children? Int J Pediatr Obes. 2006;1(3):183188. PubMed ID: 17899637 doi:10.1080/17477160600881734

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Yan SH, Zhang K, Tan GQ, Yang J, Liu ZC. Effects of obesity on dynamic plantar pressure distribution in Chinese prepubescent children during walking. Gait Posture. 2013;37(1):3742. PubMed ID: 22858245 doi:10.1016/j.gaitpost.2012.05.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bereket A, Atay Z. Current status of childhood obesity and its associated morbidities in Turkey. J Clin Res Pediatr Endocrinol. 2012;4(1):17. PubMed ID: 22394698 doi:10.4274/jcrpe.506

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Villarrasa-Sapiña I, Serra-Añó P, Pardo-Ibáñez A, Gonzalez LM, García-Massó X. Relationship between body composition and vertical ground reaction forces in obese children when walking. Clin Biomech. 2017;41:7781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Crowell HP, Milner CE, Hamill J, Davis IS. Reducing impact loading during running with the use of real-time visual feedback. J Orthop Sports Phys Ther. 2010;40(4):206213. PubMed ID: 20357417 doi:10.2519/jospt.2010.3166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Raper DP, Witchalls J, Philips EJ, Knight E, Drew MK, Waddington G. Use of a tibial accelerometer to measure ground reaction force in running: a reliability and validity comparison with force plates. J Sci Med Sport. 2018;21(1):8488. doi:10.1016/j.jsams.2017.06.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Davis IS, Milner CE, Hamill J. Does increased loading during running lead to tibial stress fractures? A prospective study. Med Sci Sports Exerc. 2004;36(suppl):S58. doi:10.1097/00005768-200405001-00462

    • Search Google Scholar
    • Export Citation
  • 23.

    Tirosh O, Orland G, Eliakim A, Nemet D, Steinberg N. Repeatability of tibial acceleration measurements made on children during walking and running. J Sci Med Sport. 2019;22(1):9195. PubMed ID: 29907516 doi:10.1016/j.jsams.2018.04.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wosk J, Voloshin A. Wave attenuation in skeletons of young healthy persons. J Biomech. 1981;14(4):261267. PubMed ID: 7240288 doi:10.1016/0021-9290(81)90071-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Liu W, Nigg BM. A mechanical model to determine the influence of masses and mass distribution on the impact force during running. J Biomech. 2000;33(2):219224. PubMed ID: 10653036 doi:10.1016/S0021-9290(99)00151-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Grotle M, Hagen KB, Natvig B, Dahl FA, Kvien TK. Obesity and osteoarthritis in knee, hip and/or hand: an epidemiological study in the general population with 10 years follow-up. BMC Musculoskelet Disord. 2008;9(1):132. PubMed ID: 18831740 doi:10.1186/1471-2474-9-132

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Steinberg N, Adams R, Waddington G, Karin J, Tirosh O. Is there a correlation between static and dynamic postural balance among young male and female dancers? J Mot Behav. 2017;49(2):163171. PubMed ID: 27715659 doi:10.1080/00222895.2016.1161595

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Tirosh O, Orland G, Eliakim A, Nemet D, Steinberg N. Tibial impact accelerations in gait of primary school children: the effect of age and speed. Gait Posture. 2017;57:265269. PubMed ID: 28683418 doi:10.1016/j.gaitpost.2017.06.270

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Persinger R, Foster C, Gibson M, Fater DC, Porcari JP. Consistency of the talk test for exercise prescription. Med Sci Sports Exerc. 2004;36(9):16321636. PubMed ID: 15354048

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Quinn TJ, Coons BA. The talk test and its relationship with the ventilatory and lactate thresholds. J Sports Sci. 2011;29(11):11751182. PubMed ID: 21774751 doi:10.1080/02640414.2011.585165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Clansey AC, Hanlon M, Wallace ES, Nevill A, Lake MJ. Influence of tibial shock feedback training on impact loading and running economy. Med Sci Sports Exerc. 2014;46(5):973981. doi:10.1249/MSS.0000000000000182

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Sinclair J, Hobbs SJ, Protheroe L, Edmundson CJ, Greenhalgh A. Determination of gait events using an externally mounted shank accelerometer. J Appl Biomech. 2013;29(1):118122. PubMed ID: 23462448 doi:10.1123/jab.29.1.118

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Buckley C, Galna B, Rochester L, Mazza C. Attenuation of upper body accelerations during gait: piloting an innovative assessment tool for Parkinson’s disease. Biomed Res Int. 2015;2015:865873. PubMed ID: 26539532 doi:10.1155/2015/865873

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Gruber AH, Boyer KA, Derrick TR, Hamill J. Impact shock frequency components and attenuation in rearfoot and forefoot running. J Sport Health Sci. 2014;3(2):113121. doi:10.1016/j.jshs.2014.03.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Rubinstein M, Eliakim A, Steinberg N, et al. Biomechanical characteristics of overweight and obese children during five different walking and running velocities. Footwear Sci. 2017;9(3):149159. doi:10.1080/19424280.2017.1363821

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Voloshin A, Wosk J. An in vivo study of low back pain and shock absorption in the human locomotor system. J Biomech. 1982;15(1):2127. PubMed ID: 6460773 doi:10.1016/0021-9290(82)90031-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Derrick TR, Caldwell GE, Hamill J. Modeling the stiffness characteristics of the human body while running with various stride lengths. J Appl Biomech. 2000;16(1):3651. doi:10.1123/jab.16.1.36

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Hobara H, Sato T, Sakaguchi M, Sato T, Nakazawa K. Step frequency and lower extremity loading during running. Int J Sports Med. 2012;33(4):310313. PubMed ID: 22383130 doi:10.1055/s-0031-1291232

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Wee H, Voloshin A. Transmission of vertical vibration to the human foot and ankle. Ann Biomed Eng. 2013;41(6):11721180. PubMed ID: 23404073 doi:10.1007/s10439-013-0760-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Daoud AI, Geissler GJ, Wang F, Saretsky J, Daoud YA, Lieberman DE. Foot strike and injury rates in endurance runners: a retrospective study. Med Sci Sports Exerc. 2012;44(7):13251334. PubMed ID: 22217561 doi:10.1249/MSS.0b013e3182465115

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Goss DL, Gross MT. Relationships among self-reported shoe type, footstrike pattern, and injury incidence. US Army Med Dep J. 2012; Oct–Dec;2530.

All Time Past Year Past 30 Days
Abstract Views 225 225 29
Full Text Views 14 14 1
PDF Downloads 8 8 0