Effects of Self-Selected Step Length and Trunk Position on Joint Kinetics in Highly Physically Fit Older Adults

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Maryland
  • 2 The University of North Carolina at Chapel Hill
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The causes of age-related differences in lower-extremity joint moments and powers are unknown. The purpose of this study was to determine the effects of highly physically active older adults walking with (1) a step length similar to young adults and (2) an upright trunk posture, on hip and ankle joint kinetics. The authors hypothesized that, compared with their self-selected walking mechanics, older adults would exhibit decreased hip kinetics and increased ankle kinetics when prescribed a young adult step length, and would exhibit decreased hip extension moments when maintaining an upright trunk posture during walking. A total of 12 active older adults (67 [5] y) and 13 active young adults (21 [3] y) walked at 1.3 m/s. The older adults also walked at 1.3 m/s with step lengths prescribed from height-matched young adults and, in a separate condition, walked with an upright trunk. The older adults did not display larger ankle kinetics or smaller hip kinetics in either condition compared to walking with a self-selected step length. These findings indicate that step length and trunk position do not primarily contribute to age-related differences in kinetics in highly active older adults and should serve as a starting point for investigating alternative explanations.

Krupenevich and Miller are with the Department of Kinesiology, University of Maryland, College Park, MD, USA. Krupenevich is also with the Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Krupenevich (rlkrup@email.unc.edu) is corresponding author.
  • 1.

    DeVita P, Hortobagyi T. Age causes a redistribution of joint torques and powers during gait. J Appl Physiol. 2000;88(5):18041811. doi:10.1152/jappl.2000.88.5.1804

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ko SU, Ling SM, Winters J, Ferrucci L. Age-related mechanical work expenditure during normal walking: the Baltimore longitudinal study of aging. J Biomech. 2009;42(12):18341839. PubMed ID: 19646705 doi:10.1016/j.jbiomech.2009.05.037

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Winter DA, Patla AE, Frank JS, Walt SE. Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther. 1990;70(6):340347. PubMed ID: 2345777 doi:10.1093/ptj/70.6.340

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Allet L, Ijzerman H, Meijer K, Willems P, Savelberg H. The influence of stride-length on plantar foot-pressures and joint moments. Gait Posture. 2011;34(3):300306. PubMed ID: 21700463 doi:10.1016/j.gaitpost.2011.05.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Murray MP, Kory RC, Clarkson BH. Walking patterns in healthy old men. J Gerontol. 1969;24(2):169178. PubMed ID: 5789252 doi:10.1093/geronj/24.2.169

  • 6.

    Judge JO, Davis RB 3rd, Ounpuu S. Step length reductions in advanced age: the role of ankle and hip kinetics. J Gerontol A Biol Sci Med Sci. 1996;51(6):M303M312. PubMed ID: 8914503 doi:10.1093/gerona/51A.6.M303

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Browne MG. Neuromechanical Adaptations to Real-Time Biofeedback of the Center of Pressure During Human Walking [master’s thesis]. Chapel Hill, NC: North Carolina State University at Chapel Hill; 2016: 89.

    • Search Google Scholar
    • Export Citation
  • 8.

    Umberger BR, Martin PE. Mechanical power and efficiency of level walking with different stride rates. J Exp Biol. 2007;210(18):32553265. doi:10.1242/jeb.000950

  • 9.

    Franz JR. The age-associated reduction in propulsive power generation in walking. Exerc Sport Sci Rev. 2016;44(4):129136. doi:10.1249/JES.0000000000000086

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    McGibbon CA. Toward a better understanding of gait changes with age and disablement: neuromuscular adaptation. Exerc Sport Sci Rev. 2003;31(2):102108. doi:10.1097/00003677-200304000-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Kerrigan DC, Todd MK, Della Croce U, Lipsitz LA, Collins JJ. Biomechanical gait alterations independent of speed in the healthy elderly: evidence for specific limiting impairments. Arch Phys Med Rehabil. 1998;79(3):317322. PubMed ID: 9523785 doi:10.1016/S0003-9993(98)90013-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Silder A, Heiderscheit B, Thelen DG. Active and passive contributions to joint kinetics during walking in older adults. J Biomech. 2008;41(7):15201527. PubMed ID: 18420214 doi:10.1016/j.jbiomech.2008.02.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Anderson DE, Madigan ML, Nussbaum MA. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. J Biomech. 2007;40(14):31053113. PubMed ID: 17485097 doi:10.1016/j.jbiomech.2007.03.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Boyer KA, Andriacchi TP, Beaupre GS. The role of physical activity in changes in walking mechanics with age. Gait Posture. 2012;36(1):149153. PubMed ID: 22445586 doi:10.1016/j.gaitpost.2012.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Cofré LE, Lythgo N, Morgan D, Galea MP. Aging modifies joint power and work when gait speeds are matched. Gait Posture. 2011;33(3):484489. doi:10.1016/j.gaitpost.2010.12.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wu G, Cavanagh PR. ISB recommendations for standardization in the reporting of kinematic data. J Biomech. 1995;28(10):12571261. PubMed ID: 8550644 doi:10.1016/0021-9290(95)00017-C

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Selbie S, Hamill J, Kepple T. Chapter 7: Three-dimensional kinetics. In: Robertson GE, Caldwell GE, Hamill J, Kamen G, Whittlesey SN, eds. Research Methods in Biomechanics. 2nd ed. Champaign, IL: Human Kinetics; 2014:151176.

    • Search Google Scholar
    • Export Citation
  • 18.

    Savelberg HH, Verdijk LB, Willems PJ, Meijer K. The robustness of age-related gait adaptations: can running counterbalance the consequences of ageing? Gait Posture. 2007;25(2):259266. PubMed ID: 16701997 doi:10.1016/j.gaitpost.2006.04.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Maki BE. Gait changes in older adults: predictors of falls or indicators of fear? J Am Geriatr Soc. 1997;45(3):313320. PubMed ID: 9063277 doi:10.1111/j.1532-5415.1997.tb00946.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Judge JO, Ounpuu S, Davis RB 3rd. Effects of age on the biomechanics and physiology of gait. Clin Geriatr Med. 1996;12(4):659678. PubMed ID: 8890109 doi:10.1016/S0749-0690(18)30194-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Miller RH, Esterson AY, Shim JK. Joint contact forces when minimizing the external knee adduction moment by gait modification: a computer simulation study. Knee. 2015;22(6):481489. PubMed ID: 26215844 doi:10.1016/j.knee.2015.06.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Thom JM, Morse CI, Birch KM, Narici MV. Triceps surae muscle power, volume, and quality in older versus younger healthy men. J Gerontol A Biol Sci Med Sci. 2005;60(9):11111117. PubMed ID: 16183948 doi:10.1093/gerona/60.9.1111

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Narici MV, Maganaris CN, Reeves ND, Capodaglio P. Effect of aging on human muscle architecture. J Appl Physiol. 2003;95(6):22292234. doi:10.1152/japplphysiol.00433.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Blazevich AJ. Effects of physical training and detraining, immobilisation, growth and aging on human fascicle geometry. Sports Med. 2006;36(12):10031017. PubMed ID: 17123325 doi:10.2165/00007256-200636120-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Brach JS, Berlin JE, VanSwearingen JM, Newman AB, Studenski SA. Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed. J Neuroeng Rehabil. 2005;2(1):21. doi:10.1186/1743-0003-2-21

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Bruijn SM, Bregman DJ, Meijer OG, Beek PJ, Van Dieen JH. The validity of stability measures: a modelling approach. J Biomech. 2011;44(13):24012408. PubMed ID: 21762919 doi:10.1016/j.jbiomech.2011.06.031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Callisaya ML, Blizzard L, Schmidt MD, et al. Gait, gait variability and the risk of multiple incident falls in older people: a population-based study. Age Ageing. 2011;40(4):481487. PubMed ID: 21628390 doi:10.1093/ageing/afr055

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    O’Connor SM, Xu HZ, Kuo AD. Energetic cost of walking with increased step variability. Gait Posture. 2012;36(1):102107. doi:10.1016/j.gaitpost.2012.01.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 89 89 25
Full Text Views 167 167 2
PDF Downloads 79 79 1