Sensitivity of Neuromechanical Predictions to Choice of Glenohumeral Stability Modeling Approach

in Journal of Applied Biomechanics
View More View Less
  • 1 North Carolina State University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Most upper-extremity musculoskeletal models represent the glenohumeral joint with an inherently stable ball-and-socket, but the physiological joint requires active muscle coordination for stability. The authors evaluated sensitivity of common predicted outcomes (instability, net glenohumeral reaction force, and rotator cuff activations) to different implementations of active stabilizing mechanisms (constraining net joint reaction direction and incorporating normalized surface electromyography [EMG]). Both EMG and reaction force constraints successfully reduced joint instability. For flexion, incorporating any normalized surface EMG data reduced predicted instability by 54.8%, whereas incorporating any force constraint reduced predicted instability by 43.1%. Other outcomes were sensitive to EMG constraints, but not to force constraints. For flexion, incorporating normalized surface EMG data increased predicted magnitudes of joint reaction force and rotator cuff activations by 28.7% and 88.4%, respectively. Force constraints had no influence on these predicted outcomes for all tasks evaluated. More restrictive EMG constraints also tended to overconstrain the model, making it challenging to accurately track input kinematics. Therefore, force constraints may be a more robust choice when representing stability.

The authors are with the Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA.

Saul (ksaul@ncsu.edu) is corresponding author.

Supplementary Materials

    • Supplementary Figure 1 (PDF 290 KB)
  • 1.

    Cereatti A, Calderone M, Buckland DM, Buettner A, Della Croce U, Rosso C. In vivo glenohumeral translation under anterior loading in an open-MRI set-up. J Biomech. 2014;47(15):37713775. PubMed ID: 25307436 doi:10.1016/j.jbiomech.2014.09.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Chadwick EK, Blana D, van den Bogert A J, Kirsch RF. A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements. IEEE Trans Biomed Eng. 2009;56(4):941948. PubMed ID: 19272926 doi:10.1109/TBME.2008.2005946

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Dickerson CR, Chaffin DB, Hughes RE. A mathematical musculoskeletal shoulder model for proactive ergonomic analysis. Comput Methods Biomech Biomed Engin. 2007;10(6):389400. PubMed ID: 17891574 doi:10.1080/10255840701592727

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Holzbaur KR, Murray WM, Delp SL. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng. 2005;33(6):829840. PubMed ID: 16078622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Lippitt SB, Matsen F. Mechanisms of glenohumeral joint stability. Clin Orthop Relat Res. 1993;(291):2028.

  • 6.

    Cholewicki J, McGill SM, Norman RW. Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach. J Biomech. 1995;28(3):321331. PubMed ID: 7730390 doi:10.1016/0021-9290(94)00065-C

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Nikooyan AA, Veeger HEJ, Westerhoff P, Graichen F, Bergmann G, van der Helm FCT. Validation of the delft shoulder and elbow model using in-vivo glenohumeral joint contact forces. J Biomech. 2010;43(15):30073014. PubMed ID: 20655049 doi:10.1016/j.jbiomech.2010.06.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Nikooyan AA, Veeger HEJ, Westerhoff P, et al. An EMG-driven musculoskeletal model of the shoulder. Hum Mov Sci. 2012;31(2):429447. PubMed ID: 22244106 doi:10.1016/j.humov.2011.08.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Blache Y, Begon M, Michaud B, Desmoulins L, Allard P, Dal Maso F. Muscle function in glenohumeral joint stability during lifting task. PLoS One. 2017;12(12):e0189406. PubMed ID: 29244838 doi:10.1371/journal.pone.0189406

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Quental C, Folgado J, Ambrósio J, Monteiro J. A new shoulder model with a biologically inspired glenohumeral joint. Med Eng Phys. 2016;38(9):969977. PubMed ID: 27381499 doi:10.1016/j.medengphy.2016.06.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Halder AM, Kuhl SG, Zobitz ME, Larson D, An KN. Effects of the glenoid labrum and glenohumeral abduction on stability of the shoulder joint through concavity-compression: an in vitro study. J Bone Joint Surg Am. 2001;83-A(7):10621069. doi:10.2106/00004623-200107000-00013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Lippitt SB, Vanderhooft JE, Harris SL, Sidles JA, Harryman DT, Matsen FA. Glenohumeral stability from concavity-compression: a quantitative analysis. J Shoulder Elbow Surg. 1993;2(1):2735. PubMed ID: 22959294 doi:10.1016/S1058-2746(09)80134-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    van der Helm F. A finite element musculoskeletal model of the shoulder mechanism. J Biomech. 1994;27(5):551569. PubMed ID: 8027090 doi:10.1016/0021-9290(94)90065-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):19401950. PubMed ID: 18018689 doi:10.1109/TBME.2007.901024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Saul KR, Hu X, Goehler CM, et al. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model. Comput Methods Biomech Biomed Engin. 2015;18(13):14451458. PubMed ID: 24995410 doi:10.1080/10255842.2014.916698

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wu G, van der Helm FC, Veeger HE, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: Shoulder, elbow, wrist and hand. J Biomech. 2005;38(5):981992. PubMed ID: 15844264 doi:10.1016/j.jbiomech.2004.05.042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    de Groot JH, Brand R. A three-dimensional regression model of the shoulder rhythm. Clin Biomech. 2001;16(9):735743. doi:10.1016/S0268-0033(01)00065-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Millard M, Uchida T, Seth A, Delp SL. Flexing computational muscle: modeling and simulation of musculotendon dynamics. J Biomech Eng. 2013;135(2):021005. PubMed ID: 23445050 doi:10.1115/1.4023390

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Binder-Markey BI, Murray WM. Incorporating the length-dependent passive-force generating muscle properties of the extrinsic finger muscles into a wrist and finger biomechanical musculoskeletal model. J Biomech. 2017;61:250257. PubMed ID: 28774467 doi:10.1016/j.jbiomech.2017.06.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Thelen DG, Anderson FC, Delp SL. Generating dynamic simulations of movement using computed muscle control. J Biomech. 2003;36(3):321328. PubMed ID: 12594980 doi:10.1016/S0021-9290(02)00432-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Thelen DG, Anderson FC. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J Biomech. 2006;39(6):11071115. PubMed ID: 16023125 doi:10.1016/j.jbiomech.2005.02.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Steele KM, Demers MS, Schwartz MH, Delp SL. Compressive tibiofemoral force during crouch gait. Gait Posture. 2012;35(4):556560. PubMed ID: 22206783 doi:10.1016/j.gaitpost.2011.11.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Vidt ME, Santago AC, Marsh AP, et al. The effects of a rotator cuff tear on activities of daily living in older adults: a kinematic analysis. J Biomech. 2016;49(4):611617. PubMed ID: 26879327 doi:10.1016/j.jbiomech.2016.01.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cram JR, Criswell E. Cram’s Introduction to Surface Electromyography. Sudbury, MA: Jones and Bartlett; 2011. http://www2.lib.ncsu.edu/catalog/record/NCSU2723443

    • Search Google Scholar
    • Export Citation
  • 25.

    Meszaros KA, Vidt ME, Dickerson CR. The effects of hand force variation on shoulder muscle activation during submaximal exertions. Int J Occup Saf Ergon. 2018;24(1):100110. PubMed ID: 28007019 doi:10.1080/10803548.2016.1266805

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Dal Maso F, Begon M, Raison M. Methodology to customize maximal isometric forces for hill-type muscle models. J Appl Biomech. 2017;33(1):8086. PubMed ID: 27735222 doi:10.1123/jab.2016-0062

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Pataky TC. One-dimensional statistical parametric mapping in python. Comput Methods Biomech Biomed Engin. 2012;15(3):295301. PubMed ID: 21756121 doi:10.1080/10255842.2010.527837

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Pataky TC, Robinson MA, Vanrenterghem J. Vector field statistical analysis of kinematic and force trajectories. J Biomech. 2013;46(14):23942401. PubMed ID: 23948374 doi:10.1016/j.jbiomech.2013.07.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hicks JL, Uchida TK, Seth A, Rajagopal A, Delp SL. Is my model good enough? best practices for verification and validation of musculoskeletal models and simulations of movement. J Biomech Eng. 2015;137(2):020905. PubMed ID: 25474098 doi:10.1115/1.4029304

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Heuberer P, Kranzl A, Laky B, Anderl W, Wurnig C. Electromyographic analysis: shoulder muscle activity revisited. Arch Orthop Trauma Surg. 2015;135(4):549563. PubMed ID: 25720847 doi:10.1007/s00402-015-2180-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Wickham J, Pizzari T, Stansfeld K, Burnside A, Watson L. Quantifying “normal” shoulder muscle activity during abduction. J Electromyogr Kinesiol. 2010;20(2):212222. PubMed ID: 19625195 doi:10.1016/j.jelekin.2009.06.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Westerhoff P, Graichen F, Bender A, et al. In vivo measurement of shoulder joint loads during activities of daily living. J Biomech. 2009;42(12):18401849. PubMed ID: 19643418 doi:10.1016/j.jbiomech.2009.05.035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Westerhoff P, Graichen F, Bender A, et al. In vivo measurement of shoulder joint loads during walking with crutches. Clin Biomech. 2012;27(7):711718. doi:10.1016/j.clinbiomech.2012.03.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Bergmann G, Graichen F, Bender A, et al. In vivo gleno-humeral joint loads during forward flexion and abduction. J Biomech. 2011;44(8):15431552. PubMed ID: 21481879 doi:10.1016/j.jbiomech.2011.02.142

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Bergmann G, Graichen F, Bender A, Kääb M, Rohlmann A, Westerhoff P. In vivo glenohumeral contact forces—Measurements in the first patient 7 months postoperatively. J Biomech. 2007;40(10):21392149. PubMed ID: 17169364 doi:10.1016/j.jbiomech.2006.10.037

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Clarys JP, Massez C, Van Den Broeck M, Piette G, Robeaux R. Total telemetric surface of the front crawl. In Matsui H, Kobayashi K, eds. Biomechanics VIII-B. International Series on Biomechanics. Vol. 4. Chicago, IL: Human Kinetics; 1983: 951958.

    • Search Google Scholar
    • Export Citation
  • 37.

    Hautier CA, Arsac LM, Deghdegh K, Souquet J, Belli A, Lacour JR. Influence of fatigue on EMG/force ratio and cocontraction in cycling. Med Sci Sports Exerc. 2000;32(4):839843. PubMed ID: 10776904.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Jobe FW, Moynes DR, Tibone JE, Perry J. An EMG analysis of the shoulder in pitching: a second report. Am J Sports Med. 1984;12(3):218220. PubMed ID: 6742305 doi:10.1177/036354658401200310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Magermans DJ, Chadwick EKJ, Veeger HEJ, Rozing PM, van der Helm FCT. Effectiveness of tendon transfers for massive rotator cuff tears: a simulation study. Clinical Biomechanics. 2004;19(2):116122. PubMed ID: 14967573 doi:10.1016/j.clinbiomech.2003.09.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Steenbrink F, de Groot JH, Veeger HE, van der Helm F C, Rozing PM. Glenohumeral stability in simulated rotator cuff tears. J Biomech. 2009;42(11):17401745. PubMed ID: 19450803 doi:10.1016/j.jbiomech.2009.04.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    van Drongelen S, Schlussel M, Arnet U, Veeger D. The influence of simulated rotator cuff tears on the risk for impingement in handbike and handrim wheelchair propulsion. Clin Biomech. 2013;28(5):495501. doi:10.1016/j.clinbiomech.2013.04.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Quental C, Folgado J, Ambrosio J, Monteiro J. Critical analysis of musculoskeletal modelling complexity in multibody biomechanical models of the upper limb. Comput Methods Biomech Biomed Engin. 2015;18(7):749759. PubMed ID: 24156405 doi:10.1080/10255842.2013.845879

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 20 20 20
Full Text Views 325 325 33
PDF Downloads 134 134 20