Effects of Optimization Technique on Simulated Muscle Activations and Forces

in Journal of Applied Biomechanics
View More View Less
  • 1 The Ohio State University
  • 2 The University of Texas at Austin
  • 3 Otterbein University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Two optimization techniques, static optimization (SO) and computed muscle control (CMC), are often used in OpenSim to estimate the muscle activations and forces responsible for movement. Although differences between SO and CMC muscle function have been reported, the accuracy of each technique and the combined effect of optimization and model choice on simulated muscle function is unclear. The purpose of this study was to quantitatively compare the SO and CMC estimates of muscle activations and forces during gait with the experimental data in the Gait2392 and Full Body Running models. In OpenSim (version 3.1), muscle function during gait was estimated using SO and CMC in 6 subjects in each model and validated against experimental muscle activations and joint torques. Experimental and simulated activation agreement was sensitive to optimization technique for the soleus and tibialis anterior. Knee extension torque error was greater with CMC than SO. Muscle forces, activations, and co-contraction indices tended to be higher with CMC and more sensitive to model choice. CMC’s inclusion of passive muscle forces, muscle activation-contraction dynamics, and a proportional-derivative controller to track kinematics contributes to these differences. Model and optimization technique choices should be validated using experimental activations collected simultaneously with the data used to generate the simulation.

Roelker, Caruthers, Hall, Chaudhari, and Siston are with the Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA. Roelker is also with the Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA. Caruthers is with the Department of Engineering, Otterbein University, Westerville, OH, USA. Pelz, Chaudhari, and Siston are with the Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA. Chaudhari and Siston are also with the Department of Orthopaedics, The Ohio State University, Columbus, OH, USA; and with the School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA.

Roelker (sarah.schloemer@utexas.edu) is corresponding author.
  • 1.

    Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):19401950. PubMed ID: 18018689 doi:10.1109/TBME.2007.901024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    SimTK. OpenSim Statistics: downloads Summary. 2020. https://simtk.org/plugins/reports/index.php?type=group&group_id=91&reports=reports. Accessed June 23, 2020.

    • Export Citation
  • 3.

    Arnold EM, Ward SR, Lieber RL, Delp SL. A model of the lower limb for analysis of human movement. Ann Biomed Eng. 2010;38(2):269279. PubMed ID: 19957039 doi:10.1007/s10439-009-9852-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Schloemer SA, Thompson JA, Silder A, Thelen DG, Siston RA. Age-related differences in gait kinematics, kinetics, and muscle function: a principal component analysis. Ann Biomed Eng. 2017;45(3):695710. PubMed ID: 27573696 doi:10.1007/s10439-016-1713-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Thompson JA, Chaudhari AMW, Schmitt LC, Best TM, Siston RA. Gluteus maximus and soleus compensate for simulated quadriceps atrophy and activation failure during walking. J Biomech. 2013;46(13):21652172. PubMed ID: 23915576 doi:10.1016/j.jbiomech.2013.06.033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hamner SR, Seth A, Delp SL. Muscle contributions to propulsion and support during running. J Biomech. 2010;43(14):27092716. PubMed ID: 20691972 doi:10.1016/j.jbiomech.2010.06.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Raabe ME, Chaudhari AMW. An investigation of jogging biomechanics using the full-body lumbar spine model: model development and validation. J Biomech. 2016;49(7):12381243. PubMed ID: 26947033 doi:10.1016/j.jbiomech.2016.02.046

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Caruthers EJ, Thompson JA, Chaudhari AMW, et al. Muscle forces and their contributions to vertical and horizontal acceleration of the center of mass during sit-to-stand transfer in young, healthy adults. J Appl Biomech. 2016;32(5):487503. PubMed ID: 27341083 doi:10.1123/jab.2015-0291

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Lin Y-C, Fok LA, Schache AG, Pandy MG. Muscle coordination of support, progression and balance during stair ambulation. J Biomech. 2015;48(2):340347. PubMed ID: 25498364 doi:10.1016/j.jbiomech.2014.11.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Roelker SA, Caruthers EJ, Baker RK, Pelz NC, Chaudhari AMW, Siston RA. Interpreting musculoskeletal models and dynamic simulations: causes and effects of differences between models. Ann Biomed Eng. 2017;45(11):26352647. PubMed ID: 28779473 doi:10.1007/s10439-017-1894-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kainz H, Modenese L, Lloyd DG, Maine S, Walsh HPJ, Carty CP. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models. J Biomech. 2016;49(9):16581669. PubMed ID: 27139005 doi:10.1016/j.jbiomech.2016.03.052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Myers CA, Laz PJ, Shelburne KB, Davidson BS. A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations. Ann Biomed Eng. 2015;43(5):10981111. PubMed ID: 25404535 doi:10.1007/s10439-014-1181-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Wagner DW, Stepanyan V, Shippen JM, et al. Consistency among musculoskeletal models: caveat utilitor. Ann Biomed Eng. 2013;41(8):17871799. PubMed ID: 23775441 doi:10.1007/s10439-013-0843-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Xiao M, Higginson JS. Muscle function may depend on model selection in forward simulation of normal walking. J Biomech. 2008;41(15):32363242. PubMed ID: 18804767 doi:10.1016/j.jbiomech.2008.08.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Anderson FC, Pandy MG. Dynamic optimization of human walking. J Biomech Eng. 2001;123(5):381390. PubMed ID: 11601721 doi:10.1115/1.1392310

  • 16.

    Thelen DG, Anderson FC. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J Biomech. 2006;39(6):11071115. PubMed ID: 16023125 doi:10.1016/j.jbiomech.2005.02.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Thelen DG, Anderson FC, Delp SL. Generating dynamic simulations of movement using computed muscle control. J Biomech. 2003;36(3):321328. PubMed ID: 12594980 doi:10.1016/S0021-9290(02)00432-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    de Groote F, Demeulenaere B, Swevers J, De Schutter J, Jonkers I. A physiology-based inverse dynamic analysis of human gait using sequential convex programming: a comparative study. Comput Methods Biomech Biomed Engin. 2012;15(10):10931102. PubMed ID: 21878002 doi:10.1080/10255842.2011.571679

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Wesseling M, de Groote F, Jonkers I. The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait. J Biomech. 2014;47(2):596601. PubMed ID: 24332615 doi:10.1016/j.jbiomech.2013.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Wesseling M, Derikx LC, De Groote F, et al. Muscle optimization techniques impact the magnitude of calculated hip joint contact forces. J Orthop Res. 2015;33(3):430438. PubMed ID: 25492510 doi:10.1002/jor.22769

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Rankin JW, Rubenson J, Hutchinson JR. Inferring muscle functional roles of the ostrich pelvic limb during walking and running using computer optimization. J R Soc Interface. 2016;13(118):20160035. PubMed ID: 27146688 doi:10.1098/rsif.2016.0035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lin YC, Dorn TW, Schache AG, Pandy MG. Comparison of different methods for estimating muscle forces in human movement. Proc Inst Mech Eng H. 2012;226(2):103112. PubMed ID: 22468462 doi:10.1177/0954411911429401

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Mokhtarzadeh H, Perraton L, Fok L, et al. A comparison of optimisation methods and knee joint degrees of freedom on muscle force predictions during single-leg hop landings. J Biomech. 2014;47(12):28632868. PubMed ID: 25129166 doi:10.1016/j.jbiomech.2014.07.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Lai AKM, Arnold AS, Wakeling JM. Why are antagonist muscles co-activated in my simulation? A musculoskeletal model for analysing human locomotor tasks. Ann Biomed Eng. 2017;45(12):27622774. PubMed ID: 28900782 doi:10.1007/s10439-017-1920-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Jamison ST, Pan X, Chaudhari AMW. Knee moments during run-to-cut maneuvers are associated with lateral trunk positioning. J Biomech. 2012;45(11):18811885. PubMed ID: 22704608 doi:10.1016/j.jbiomech.2012.05.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Thelen DG. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J Biomech Eng. 2003;125(1):7077. PubMed ID: 12661198 doi:10.1115/1.1531112

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hicks JL, Seth A, Hamner SR, et al. Simulation with OpenSim - Best Practices. 2010. https://simtk-confluence.stanford.edu:8443/display/OpenSim/Simulation+with+OpenSim+-+Best+Practices. Accessed September 7, 2018.

    • Export Citation
  • 28.

    Hicks JL, Uchida TK, Seth A, Rajagopal A, Delp SL. Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement. J Biomech Eng. 2015;137(2):20905. doi:10.1115/1.4029304

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Lewek MD, Rudolph KS, Snyder-Mackler L. Control of frontal plane knee laxity during gait in patients with medial compartment knee osteoarthritis. Osteoarthritis Cartilage. 2004;12(9):745751. PubMed ID: 15325641 doi:10.1016/j.joca.2004.05.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Schmitt LC, Rudolph KS. Influences on knee movement strategies during walking in persons with medial knee osteoarthritis. Arthritis Rheum. 2007;57(6):10181026. PubMed ID: 17665469 doi:10.1002/art.22889

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Rudolph KS, Schmitt LC, Lewek MD. Age-related changes in strength, joint laxity, and walking patterns: are they related to knee osteoarthritis? Phys Ther. 2007;87(11):14221432. PubMed ID: 17785376 doi:10.2522/ptj.20060137

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Schmitz A, Silder A, Heiderscheit B, Mahoney J, Thelen DG. Differences in lower-extremity muscular activation during walking between healthy older and young adults. J Electromyogr Kinesiol. 2009;19(6):10851091. PubMed ID: 19081734 doi:10.1016/j.jelekin.2008.10.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Kwon O-Y, Minor SD, Maluf KS, Mueller MJ. Comparison of muscle activity during walking in subjects with and without diabetic neuropathy. Gait Posture. 2003;18(1):105113. PubMed ID: 12855306 doi:10.1016/S0966-6362(02)00166-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 30 30 30
Full Text Views 469 469 67
PDF Downloads 188 188 24