Can Treadmill Slip-Perturbation Training Reduce Longer-Term Fall Risk Upon Overground Slip Exposure?

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Illinois at Chicago
  • 2 Kessler Foundation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The purpose was to examine and compare the longer-term generalization between 2 different practice dosages for a single-session treadmill slip-perturbation training when reexposed to an overground slip 6 months later. A total of 45 older adults were conveniently assigned to either 24 or 40 slip-like treadmill perturbation trials or a third control group. Overground slips were given immediately after initial training, and at 6 months after initial training in order to examine immediate and longer-term effects. The performance (center of mass stability and vertical limb support) and fall percentage from the laboratory-induced overground slips (at initial posttraining and at 6 mo) were measured and compared between groups. Both treadmill slip-perturbation groups showed immediate generalization at the initial posttraining test and longer-term generalization at the 6-month retest. The higher-practice-dosage group performed significantly better than the control group (P < .05), with no difference between the lower-practice-dosage and the control groups at the 6-month retest (P > .05). A single session of treadmill slip-perturbation training showed a positive effect for reducing older adults’ fall risk for laboratory-induced overground slips. A higher-practice dosage of treadmill slip perturbations could be more beneficial for further reducing fall risk.

Lee, Bhatt, Y. Wang, S. Wang, and Pai are with the Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA. Lee and Y. Wang are also with the Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA. Liu is with the Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, USA.

Pai (clivepai08@gmail.com) is corresponding author.
  • 1.

    Rubenstein LZ. Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing. 2006;35(suppl 2):ii37ii41. doi:10.1093/ageing/afl084

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Morris JC, Rubin EH, Morris EJ, Mandel SA. Senile dementia of the Alzheimer’s type: an important risk factor for serious falls. J Gerontol. 1987;42(4):412417. PubMed ID: 3598089 doi:10.1093/geronj/42.4.412

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Moylan KC, Binder EF. Falls in older adults: risk assessment, management and prevention. Am J Med. 2007;120(6):493.e1493.e6. PubMed ID: 17524747 doi:10.1016/j.amjmed.2006.07.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Sattin RW. Falls among older persons: a public health perspective. Annu Rev Public Health. 1992;13(1):489508. doi:10.1146/annurev.pu.13.050192.002421

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Dijkstra BW, Horak FB, Kamsma YP, Peterson DS. Older adults can improve compensatory stepping with repeated postural perturbations. Front Aging Neurosci. 2015;7:201. PubMed ID: 26539111 doi:10.3389/fnagi.2015.00201

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Luukinen H, Herala M, Koski K, Honkanen R, Laippala P, Kivela SL. Fracture risk associated with a fall according to type of fall among the elderly. Osteoporos Int. 2000;11(7):631634. PubMed ID: 11069199 doi:10.1007/s001980070086

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Boyé ND, Van Lieshout EM, Van Beeck EF, Hartholt KA, Van der Cammen TJ, Patka P. The impact of falls in the elderly. Trauma. 2013;15(1):2935. doi:10.1177/1460408612463145

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Pai Y-C, Bhatt T, Yang F, Wang E. Perturbation training can reduce community-dwelling older adults’ annual fall risk: a randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2014;69(12):15861594. PubMed ID: 24966227 doi:10.1093/gerona/glu087

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Pai YC, Patton JL. Center of mass velocity-position predictions for balance control. J Biomech. 1997;30(4):347354. PubMed ID: 9075002 doi:10.1016/S0021-9290(96)00165-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bhatt T, Pai Y-C. Generalization of gait adaptation for fall prevention: from moveable platform to slippery floor. J Neurophysiol. 2009;101(2):948957. PubMed ID: 19073804 doi:10.1152/jn.91004.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Karamanidis K, Epro G, McCrum C, König M. Improving trip-and slip-resisting skills in older people: perturbation dose matters. Exerc Sport Sci Rev. 2020;48(1):4047. PubMed ID: 31663865 doi:10.1249/JES.0000000000000210

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Okubo Y, Sturnieks DL, Brodie MA, Duran L, Lord SR. Effect of reactive balance training involving repeated slips and trips on balance recovery among older adults: a blinded randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2019;74(9):14891496. PubMed ID: 30721985 doi:10.1093/gerona/glz021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Pai Y-C, Yang F, Bhatt T, Wang E. Learning from laboratory-induced falling: long-term motor retention among older adults. Age. 2014;36(3):9640. PubMed ID: 24668268 doi:10.1007/s11357-014-9640-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Yang F, Cereceres P, Qiao M. Treadmill-based gait-slip training with reduced training volume could still prevent slip-related falls. Gait Posture. 2018;66:160165. PubMed ID: 30195219 doi:10.1016/j.gaitpost

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Patel P, Bhatt T. Adaptation to large-magnitude treadmill-based perturbations: improvements in reactive balance response. Physiol Rep. 2015;3(2):e12247. PubMed ID: 25649245 doi:10.14814/phy2.12247

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wang Y, Wang S, Lee A, Pai Y-C, Bhatt T. Treadmill-gait slip training in community-dwelling older adults: mechanisms of immediate adaptation for a progressive ascending-mixed-intensity protocol. Exp Brain Res. 2019;237(9):23052317. PubMed ID: 31286173 doi:10.1007/s00221-019-05582-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Wang Y, Bhatt T, Liu X, et al. Can treadmill-slip perturbation training reduce immediate risk of over-ground-slip induced fall among community-dwelling older adults? J Biomech. 2019;84:5866. PubMed ID: 30616984 doi:10.1016/j.jbiomech.2018.12.017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Crenshaw JR, Kaufman KR, Grabiner MD. Compensatory-step training of healthy, mobile people with unilateral, transfemoral or knee disarticulation amputations: a potential intervention for trip-related falls. Gait Posture. 2013;38(3):500506. PubMed ID: 23433547 doi:10.1016/j.gaitpost.2013.01.023

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Wang Y, Wang S, Bolton R, Kaur T, Bhatt T. Effects of task-specific obstacle-induced trip-perturbation training: proactive and reactive adaptation to reduce fall-risk in community-dwelling older adults. Aging Clin Exp Res. 2020;32(5):893905. PubMed ID: 31321743 doi:10.1007/s40520-019-01268-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Yang F, Bhatt T, Pai Y-C. Generalization of treadmill-slip training to prevent a fall following a sudden (novel) slip in over-ground walking. J Biomech. 2013;46(1):6369. PubMed ID: 23141636 doi:10.1016/j.jbiomech.2012.10.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Liu X, Bhatt T, Pai Y-C. Intensity and generalization of treadmill slip training: high or low, progressive increase or decrease? J Biomech. 2016;49(2):135140. PubMed ID: 26159058 doi:10.1016/j.jbiomech.2015.06.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lee A, Bhatt T, Pai Y-C. Generalization of treadmill perturbation to overground slip during gait: effect of different perturbation distances on slip recovery. J Biomech. 2016;49(2):149154. PubMed ID: 26653674 doi:10.1016/j.jbiomech.2015.11.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lee A, Bhatt T, Liu X, Wang Y, Pai Y-C. Can higher training practice dosage with treadmill slip-perturbation necessarily reduce risk of falls following overground slip? Gait Posture. 2018;61:387392. PubMed ID: 29453101 doi:10.1016/j.gaitpost.2018.01.037

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Bhatt T, Pai Y-C. Prevention of slip-related backward balance loss: the effect of session intensity and frequency on long-term retention. Arch Phys Med Rehabil. 2009;90(1):3442. PubMed ID: 19154827 doi:10.1016/j.apmr.2008.06.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Krakauer JW, Shadmehr R. Consolidation of motor memory. Trends Neurosci. 2006;29(1):5864. PubMed ID: 16290273 doi:10.1016/j.tins.2005.10.003

  • 26.

    König M, Epro G, Seeley J, Catalá-Lehnen P, Potthast W, Karamanidis K. Retention of improvement in gait stability over 14 weeks due to trip-perturbation training is dependent on perturbation dose. J Bomech. 2019;84:243246. doi:10.1016/j.jbiomech.2018.12.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Brashers-Krug T, Shadmehr R, Bizzi E. Consolidation in human motor memory. Nature. 1996;382(6588):252255. doi:10.1038/382252a0

  • 28.

    Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189198. PubMed ID: 1202204 doi:10.1016/0022-3956(75)90026-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142148. PubMed ID: 1991946 doi:10.1111/j.1532-5415.1991.tb01616.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Yang F, Pai Y-C. Automatic recognition of falls in gait-slip training: harness load cell based criteria. J Biomech. 2011;44(12):22432249. PubMed ID: 21696744 doi:10.1016/j.jbiomech.2011.05.039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Bhatt T, Yang F, Pai YC. Learning to resist gait-slip falls: long-term retention in community-dwelling older adults. Arch Phys Med Rehabil. 2012;93(4):557564. PubMed ID: 22341989 doi:10.1016/j.apmr.2011.10.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Winter DA. Biomechanics and Motor Control of Human Movement. 4th ed. New Jersey, NJ: John Wiley & Sons; 2009.

  • 33.

    Bhatt T, Wening J, Pai Y-C. Adaptive control of gait stability in reducing slip-related backward loss of balance. Exp Brain Res. 2006;170(1):6173. PubMed ID: 16344930 doi:10.1007/s00221-005-0189-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Yang F, Bhatt T, Pai Y-C. Role of stability and limb support in recovery against a fall following a novel slip induced in different daily activities. J Biomech. 2009;42:19031908. PubMed ID: 19520372 doi:10.1016/j.jbiomech.2009.05.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Bhatt T, Wang E, Pai Y-C. Retention of adaptive control over varying intervals: prevention of slip-induced backward balance loss during gait. J Neurophysiol. 2006;95(5):29132922. PubMed ID: 16407423 doi:10.1152/jn.01211.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Patel PJ, Bhatt T, DelDonno SR, Langenecker SA, Dusane S. Examining neural plasticity for slip-perturbation training: an fMRI study. Front Neurol. 2019;9:1181. PubMed ID: 30728803 doi:10.3389/fneur.2018.01181

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Liu X, Bhatt T, Wang S, Yang F, Pai Y-CC. Retention of the “first-trial effect” in gait-slip among community-living older adults. Geroscience. 2017;39(1):93102. PubMed ID: 28299643 doi:10.1007/s11357-017-9963-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Barajas J, Peterson D. First-trial protective step performance before and after short-term perturbation practice in people with Parkinson’s disease. J Neurol. 2018;265(5):11381144. PubMed ID: 29520471 doi:10.1007/s00415-018-8821-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Goel R, Ozdemir RA, Nakagome S, Contreras-Vidal JL, Paloski WHParikh PJ. Effects of speed and direction of perturbation on electroencephalographic and balance responses. Exp Brain Res. 2018;236(7):20732083. PubMed ID: 29752486 doi:10.1007/s00221-018-5284-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Campbell AD, Squair JW, Chua R, Inglis JT, Carpenter MG. First trial and StartReact effects induced by balance perturbations to upright stance. J Neurophysiol. 2013;110(9):22362245. PubMed ID: 23945786 doi:10.1152/jn.00766.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 279 279 274
Full Text Views 491 491 236
PDF Downloads 106 106 28