Development of a Full Flexion 3D Musculoskeletal Model of the Knee Considering Intersegmental Contact During High Knee Flexion Movements

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Saskatchewan
  • 2 University of Waterloo
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

A musculoskeletal model of the right lower limb was developed to estimate 3D tibial contact forces in high knee flexion postures. This model determined the effect of intersegmental contact between thigh–calf and heel–gluteal structures on tibial contact forces. This model includes direct tracking and 3D orientation of intersegmental contact force, femoral translations from in vivo studies, wrapping of knee extensor musculature, and a novel optimization constraint for multielement muscle groups. Model verification consisted of calculating the error between estimated tibial compressive forces and direct measurements from the Grand Knee Challenge during movements to ∼120° of knee flexion as no high knee flexion data are available. Tibial compression estimates strongly fit implant data during walking (R 2 = .83) and squatting (R 2 = .93) with a root mean squared difference of .47 and .16 body weight, respectively. Incorporating intersegmental contact significantly reduced model estimates of peak tibial anterior–posterior shear and increased peak medial–lateral shear during the static phase of high knee flexion movements by an average of .33 and .07 body weight, respectively. This model supports prior work in that intersegmental contact is a critical parameter when estimating tibial contact forces in high knee flexion movements across a range of culturally and occupationally relevant postures.

Kingston is with the Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, SK, Canada. Kingston and Acker are with the Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.

Acker (stacey.acker@uwaterloo.ca) is corresponding author.
  • 1.

    Kingston DC, Acker SM. Thigh-calf contact parameters for six high knee flexion postures: onset, maximum angle, total force, contact area, and center of force. J Biomech. 2018;67:4654. PubMed ID: 29248190 doi:10.1016/j.jbiomech.2017.11.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hemmerich A, Brown H, Smith S, Marthandam K, Wyss U. Hip, knee, and ankle kinematics of high range of motion activities. J Orthop Res. 2006;24(4):770781. PubMed ID: 16514664 doi:10.1002/jor.20114

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Zelle J, Barink M, De Waal Malefijt M, Verdonschot N. Thigh-calf contact: does it affect the loading of the knee in the high-flexion range? J Biomech. 2009;42(5):587593. PubMed ID: 19200996 doi:10.1016/j.jbiomech.2008.12.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Nagura T, Matsumoto H, Kiriyama Y, Chaudhari A, Andriacchi T. Tibiofemoral joint contact force in deep knee flexion and its consideration in knee osteoarthritis and joint replacement. J Appl Biomech. 2006;22(4):305313. PubMed ID: 17293627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Chapman-Sheath PJ, Bruce WJM, Chung WK, Morberg P, Gillies RM, Walsh WR. In vitro assessment of proximal polyethylene contact surface areas and stresses in mobile bearing knees. Med Eng Phys. 2003;25(6):437443. PubMed ID: 12787981 doi:10.1016/S1350-4533(03)00016-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Clements KM, Bee ZC, Crossingham GV, Adams MA, Sharif M. How severe must repetitive loading be to kill chondrocytes in articular cartilage? Osteoarthritis Cartilage. 2001;9(5):499507. PubMed ID: 11467899 doi:10.1053/joca.2000.0417

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Seedhom BB. Conditioning of cartilage during normal activities is an important factor in the development of osteoarthritis. Rheumatology. 2006;45(2):146149. PubMed ID: 16287918 doi:10.1093/rheumatology/kei197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Orsi AD, Chakravarthy S, Canavan PK, et al. The effects of knee joint kinematics on anterior cruciate ligament injury and articular cartilage damage. Comput Methods Biomech Biomed Engin. 2016;19(5):493506. PubMed ID: 26068032 doi:10.1080/10255842.2015.1043626

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Moroni L, Lambers F, Wilson W, et al. Finite element analysis of meniscal anatomical 3D scaffolds: implications for tissue engineering. Open Biomed Eng J. 2007;1:2334. PubMed ID: 19662124. http://mate.tue.nl/mate/pdfs/8172.pdf. Accessed April 7, 2014.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    De Sanctis V, Soliman A, Bernasconi S, et al. Primary dysmenorrhea in adolescents: prevalence, impact and recent knowledge. Pediatr Endocrinol Rev. 2015;13(2):512520. PubMed ID: 26841639 doi:10.1002/term

    • Search Google Scholar
    • Export Citation
  • 11.

    Thambyah A, Fernandez J. Squatting-related tibiofemoral shear reaction forces and a biomechanical rationale for femoral component loosening. Sci World J. 2014;2014:785175. doi:10.1155/2014/785175

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Thambyah A. How critical are the tibiofemoral joint reaction forces during frequent squatting in Asian populations? Knee. 2008;15(4):286294. PubMed ID: 18524597 doi:10.1016/j.knee.2008.04.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hirokawa S, Fukunaga M. Knee joint forces when rising from kneeling positions. J Biomech Sci Eng. 2013;8(1):2739. doi:10.1299/jbse.8.27

  • 14.

    Caruntu DI, Hefzy MS, Goel VK, Goitz HT, Dennis MJ, Agrawal V. Modeling the knee joint in deep flexion: “Thigh and Calf” contact. In: Summer Bioengineering Conference; 2003. Key Biscayne, Florida. 4–5.

    • Export Citation
  • 15.

    Zelle J, Barink M, Loeffen R, De Waal Malefijt M, Verdonschot N. Thigh-calf contact force measurements in deep knee flexion. Clin Biomech. 2007;22(7):821826. doi:10.1016/j.clinbiomech.2007.03.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Dooley E, Carr J, Carson E, Russell S. The effects of knee support on the sagittal lower-body joint kinematics and kinetics of deep squats. J Biomech. 2019;82:164170. PubMed ID: 30446216 doi:10.1016/j.jbiomech.2018.10.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Damsgaard M, Rasmussen J, Christensen ST, Surma E, de Zee M. Analysis of musculoskeletal systems in the AnyBody modeling system. Simul Model Pract Theory. 2006;14(8):11001111. doi:10.1016/j.simpat.2006.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Wu JZ, Sinsel EW, Carey RE, Zheng L, Warren CM, Breloff SP. Biomechanical modeling of deep squatting: effects of the interface contact between posterior thigh and shank. J Biomech. 2019;96:109333. PubMed ID: 31558308 doi:10.1016/J.JBIOMECH.2019.109333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Pollard JP, Porter WL, Redfern MS. Forces and moments on the knee during kneeling and squatting. J Appl Biomech. 2011;27(3):233241. PubMed ID: 21844612

  • 20.

    Buford W, Ivey F, Malone J, et al. Muscle balance at the knee—moment arms for the normal knee and the ACL-minus knee. IEEE Trans Rehabil Eng. 1997;5(4):367379. PubMed ID: 9422462 doi:10.1109/86.650292

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Wagner DW, Stepanyan V, Shippen JM, et al. Consistency among musculoskeletal models: caveat utilitor. Ann Biomed Eng. 2013;41(8):17871799. PubMed ID: 23775441 doi:10.1007/s10439-013-0843-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Fiorentino NM, Lin JS, Ridder KB, Guttman MA, McVeigh ER, Blemker SS. Rectus femoris knee muscle moment arms measured in vivo during dynamic motion with real-time magnetic resonance imaging. J Biomech Eng. 2013;135(4):044501. PubMed ID: 24231903 doi:10.1115/1.4023523

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Carbone V, van der Krogt MM, Koopman HFJM, Verdonschot N. Sensitivity of subject-specific models to hill muscle-tendon model parameters in simulations of gait. J Biomech. 2016;49(9):19531960. PubMed ID: 27131851 doi:10.1016/j.jbiomech.2016.04.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Arnold EM, Ward SR, Lieber RL, Delp SL. A model of the lower limb for analysis of human movement. Ann Biomed Eng. 2010;38(2):269279. PubMed ID: 19957039 doi:10.1007/s10439-009-9852-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Delp SL, Loan P, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 1990;37(8):757767. PubMed ID: 2210784 doi:10.1109/10.102791

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Dickerson CR, Chaffin DB, Hughes RE. A mathematical musculoskeletal shoulder model for proactive ergonomic analysis. Comput Methods Biomech Biomed Engin. 2007;10(6):389400. PubMed ID: 17891574 doi:10.1080/10255840701592727

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Fukunaga T, Roy RR, Shellock FG, Hodgson JA, Edgerton VR. Specific tension of human plantar flexors and dorsiflexors. J Appl Physiol. 1996;80(1):158165. PubMed ID: 8847297 doi:10.1152/jappl.1996.80.1.158

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Erskine RM, Jones DA, Maganaris CN, Degens H. In vivo specific tension of the human quadriceps femoris muscle. Eur J Appl Physiol. 2009;106(6):827838. PubMed ID: 19468746 doi:10.1007/s00421-009-1085-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Erskine RM, Jones DA, Maffulli N, Williams AG, Stewart CE, Degens H. What causes in vivo muscle specific tension to increase following resistance training? Exp Physiol. 2011;96(2):145155. PubMed ID: 20889606 doi:10.1113/expphysiol.2010.053975

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN. In vivo measurements of muscle specific tension in adults and children. Exp Physiol. 2010;95(1):202210. PubMed ID: 19748968 doi:10.1113/expphysiol.2009.048967

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nakagawa S, Kadoya Y, Todo S, et al. Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg Br. 2000;82(8):11991200. PubMed ID: 11132287 doi:10.1302/0301-620X.82B8.10718

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Johal P, Williams A, Wragg P, Hunt D, Gedroyc W. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using “interventional” MRI. J Biomech. 2005;38(2):269276. PubMed ID: 15598453 doi:10.1016/j.jbiomech.2004.02.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Leszko F, Hovinga KR, Lerner AL, Komistek RD, Mahfouz MR. In vivo normal knee kinematics: is ethnicity or gender an influencing factor? Clin Orthop Relat Res. 2011;469(1):95106. PubMed ID: 20814773 doi:10.1007/s11999-010-1517-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Fregly B, Besier T, Lloyd D, et al. Grand challenge competition to predict in vivo knee loads. J Orthop Res. 2012;30(4):503513. PubMed ID: 22161745 doi:10.1002/jor.22023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Taylor WR, Schütz P, Bergmann G, et al. A comprehensive assessment of the musculoskeletal system: the CAMS-Knee data set. J Biomech. 2017;65(8):3239. doi:10.1016/j.jbiomech.2017.09.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kingston DC, Acker SM. Prediction of thigh-calf contact parameters from anthropometric regression. Proc Inst Mech Eng Part H J Eng Med. 2019;233(4):414423. doi:10.1177/0954411919832037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Winter D. Biomoechanics and Motor Control of Human Movement. 4th ed. Hoboken, NJ: John Wiley & Sons; 2009.

  • 38.

    Zatsiorsky VMM. Kinematics of Human Motion. Windsor, ON: Human Kinetics; 1998.

  • 39.

    Wu G, Cavanagh P. ISB recommendations for standardization in the reporting of kinematic data. J Biomech. 1995;28(10):12571261. PubMed ID: 8550644. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:ISB+Recommendations+for+Standardization+in+the+Reporting+of+Kinematic+Data#0. Accessed October 30, 2013.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Horsman K, Koopman H, van der Helm F, Prosé LP, Veeger H. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin Biomech. 2007;22(2):239247. doi:10.1016/j.clinbiomech.2006.10.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Mitsuhashi N, Fujieda K, Tamura T, Kawamoto S, Takagi T, Okubo K. BodyParts3D: 3D structure database for anatomical concepts. Nucleic Acids Res. 2009;37:782785. doi:10.1093/nar/gkn613

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Umeyama S. Least-squares estimation of transformation parameters between two point patterns. IEEE Trans Pattern Anal Mach Intell. 1991;13(4):376380. doi:10.1109/34.88573

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Camomilla V, Cereatti A, Vannozzi G, Cappozzo A. An optimized protocol for hip joint centre determination using the functional method. J Biomech. 2006;39(6):10961106. PubMed ID: 16549099 doi:10.1016/j.jbiomech.2005.02.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Besier T, Sturnieks D, Alderson J, Lloyd D. Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. J Biomech. 2003;36(8):11591168. PubMed ID: 12831742 doi:10.1016/S0021-9290(03)00087-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Ehrig RM, Taylor WR, Duda GN, Heller MO. A survey of formal methods for determining functional joint axes. J Biomech. 2007;40(10):21502157. PubMed ID: 17169365 doi:10.1016/j.jbiomech.2006.10.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Ehrig RM, Taylor WR, Duda GN, Heller MO. A survey of formal methods for determining the centre of rotation of ball joints. J Biomech. 2006;39(15):27982809. PubMed ID: 16293257 doi:10.1016/j.jbiomech.2005.10.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Ehrig RM, Heller MO. On intrinsic equivalences of the finite helical axis, the instantaneous helical axis, and the SARA approach. A mathematical perspective. J Biomech. 2019;84:410. PubMed ID: 30661733 doi:10.1016/j.jbiomech.2018.12.034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Charlton IW, Johnson GR. Application of spherical and cylindrical wrapping algorithms in a musculoskeletal model of the upper limb. J Biomech. 2001;34(9):12091216. PubMed ID: 11506792 doi:10.1016/S0021-9290(01)00074-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Iwaki H, Pinskerova V, Freeman MAR. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br. 2000;82(8):11891195. PubMed ID: 11132285 doi:10.1302/0301-620X.82B8.10717

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Pandy MG. Moment arm of a muscle force. Exerc Sport Sci Rev. 1999;27(1):79118. doi:10.1249/00003677-199900270-00006

  • 51.

    An K, Kwak B, Chao E, Morrey B. Determination of muscle and joint forces: a new technique to solve the indeterminate problem. J Biomech Eng. 1984;106(4):364367. PubMed ID: 6513533

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    An K. Tendon excursion and gliding: clinical impacts from humble concepts. J Biomech. 2007;40(4):713718. PubMed ID: 17092508 doi:10.1016/j.jbiomech.2006.10.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Nicolopoulos C, Anderson E, Solomonidis S, Giannoudis P. Evaluation of the gait analysis FSCAN pressure system: clinical tool or toy? Foot. 2000;10(3):124130. doi:10.1054/foot.1999.0536

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Wilson DR, Apreleva MV, Eichler MJ, Harrold FR. Accuracy and repeatability of a pressure measurement system in the patellofemoral joint. J Biomech. 2003;36(12):19091915. PubMed ID: 14614944 doi:10.1016/S0021-9290(03)00105-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Cazzola D, Trewartha G, Preatoni E. Time-based calibrations of pressure sensors improve the estimation of force signals containing impulsive events. Proc Inst Mech Eng P J Sport Eng Technol. 2014;228(2):147151. doi:10.1177/1754337113504397

    • Search Google Scholar
    • Export Citation
  • 56.

    Hof A. An explicit expression for the moment in multibody systems. J Biomech. 1992;25(10):12091211. PubMed ID: 1400520. http://www.sciencedirect.com/science/article/pii/002192909290076D. Accessed April 24, 2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Zatsiorsky V. Kinetics of Human Motion. Windsor, ON: Human Kinetics; 2002.

  • 58.

    de Leva P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech. 1996;29(9):12231230. http://www.sciencedirect.com/science/article/pii/0021929095001786. Accessed April 24, 2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Plamondon A, Gagnon M, Desjardins P. Validation of two 3-D segment models to calculate the net reaction forces and moments at the L(5)/S(1) joint in lifting. Clin Biomech. 1996;11(2):101110. PubMed ID: 11415605

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Collins J. The redundant nature optimization of locomotor optimization laws. J Biomech. 1994;28(3):251267.

  • 61.

    Crowninshield RD, Brand RA. A physiologically based criterion of muscle force prediction in locomotion. J Biomech. 1981;14(11):793801. PubMed ID: 7334039

  • 62.

    Dul J, Townsend M, Shiavi R, Johnson G. Muscular synergism—I. On criteria for load sharing between synergistic muscles. J Biomech. 1984;17(9):663673. PubMed ID: 6501326. http://www.sciencedirect.com/science/article/pii/0021929084901209. Accessed December 8, 2013.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Monaco V, Coscia M, Micera S. Cost function tuning improves muscle force estimation computed by static optimization during walking. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:82638266. PubMed ID: 22256261 doi:10.1109/IEMBS.2011.6092037

    • Search Google Scholar
    • Export Citation
  • 64.

    Miller RH, Gillette JC, Derrick TR, Caldwell GE. Muscle forces during running predicted by gradient-based and random search static optimisation algorithms. Comput Methods Biomech Biomed Engin. 2009;12(2):217225. PubMed ID: 18828028 doi:10.1080/10255840802430579

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Balice-Gordon RJ, Thompson WJ. The organization and development of compartmentalized innervation in rat extensor digitorum longus muscle. J Physiol. 1988;398:211231. PubMed ID: 3392671 doi:10.1113/jphysiol.1988.sp017039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Crago PE, Peckham PH, Thrope GB. Modulation of muscle force by recruitment during intramuscular stimulation. IEEE Trans Biomed Eng. 1980;27(12):679684. PubMed ID: 6970162 doi:10.1109/TBME.1980.326592

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Huijing PA, Baan GC. Myofascial Force Transmission causes interaction between adjacent muscles and connective tissue: effects of blunt dissection and compartmental fasciotomy on length force characteristics of rat extensor digitorum longus muscle. Arch Physiol Biochem. 2001;109(2):97109. PubMed ID: 11780782 doi:10.1076/apab.109.2.97.4269

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Neptune RR. Optimization algorithm performance in determining optimal controls in human movement analyses. J Biomech Eng. 1999;121(2):249252. PubMed ID: 10211461 doi:10.1115/1.2835111

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Wu X, Zhu Y. A global optimization method for three-dimensional conformal radiotherapy treatment planning. Phys Med Biol. 2001;46(1):107119. PubMed ID: 11197665

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Lloyd DG, Besier TF. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech. 2003;36(6):765776. PubMed ID: 12742444 doi:10.1016/S0021-9290(03)00010-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Buchanan TS, Lloyd DG, Manal K, Besier TF. Estimation of muscle forces and joint moments using a forward-inverse dynamics model. Med Sci Sports Exerc. 2005;37(11):19111916. PubMed ID: 16286861 doi:10.1249/01.mss.0000176684.24008.6f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Thelen DG, Anderson FC. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J Biomech. 2006;39(6):11071115. PubMed ID: 16023125 doi:10.1016/j.jbiomech.2005.02.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Zhao D, Banks SA, D’Lima DD, Colwell WC Jr, Fregly BJ. In vivo medial and lateral tibial loads during dynamic and high flexion activities. J Orthop Res. 2007;25(5):593602. PubMed ID: 17290383 doi:10.1002/jor

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Bennett HJ, Valenzuela KA, Fleenor K, Weinhandl JT. A normative database of hip and knee joint biomechanics during dynamic tasks using four functional prediction methods and three functional calibrations. J Biomech Eng. 2020;142(4):116. doi:10.1115/1.4044503

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Yang Z, Wickwire AC, Debski RE. Development of a subject-specific model to predict the forces in the knee ligaments at high flexion angles. Med Biol Eng Comput. 2010;48(11):10771085. PubMed ID: 20585990 doi:10.1007/s11517-010-0653-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Kutzner I, Heinlein B, Graichen F, et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech. 2010;43(11):21642173. PubMed ID: 20537336 doi:10.1016/j.jbiomech.2010.03.046

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Bergmann G, Bender A, Dymke J, Duda G, Damm P. Standardized loads acting in knee implants. PLoS One. 2014;9(1): e86035. PubMed ID: 24465856 doi:10.1371/journal.pone.0155612

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Mündermann A, Dyrby CO, D’Lima DD, Colwell CW, Andriacchi TP. In vivo knee loading characteristics during activities of daily living as measured by an instrumented total knee replacement. J Orthop Res. 2008;26(9):11671172. PubMed ID: 18404700 doi:10.1002/jor.20655

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Dahlkvist NJ, Mayo P, Seedhom BB. Forces during squatting and rising from a deep squat. Eng Med. 1982;11(2):6976. PubMed ID: 7201419 doi:10.1243/EMED_JOUR_1982_011_019_02

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Smith SM, Cockburn RA, Hemmerich A, Li RM, Wyss UP. Tibiofemoral joint contact forces and knee kinematics during squatting. Gait Posture. 2008;27(3):376386. PubMed ID: 17583512 doi:10.1016/j.gaitpost.2007.05.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Thambyah A, Goh JCH, Das De S. Contact stresses in the knee joint in deep flexion. Med Eng Phys. 2005;27(4):329335. PubMed ID: 15823474 doi:10.1016/j.medengphy.2004.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 320 320 118
PDF Downloads 99 99 28