Leg and Joint Stiffness Adaptations to Minimalist and Maximalist Running Shoes

in Journal of Applied Biomechanics
View More View Less
  • 1 Indiana University
  • | 2 Boise State University
  • | 3 Georgia Southern University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

The running footwear literature reports a conceptual disconnect between shoe cushioning and external impact loading: footwear or surfaces with greater cushioning tend to result in greater impact force characteristics during running. Increased impact loading with maximalist footwear may reflect an altered lower-extremity gait strategy to adjust for running in compliant footwear. The authors hypothesized that ankle and knee joint stiffness would change to maintain the effective vertical stiffness, as cushioning changed with minimalist, traditional, and maximalist footwear. Eleven participants ran on an instrumental treadmill (3.5 m·s−1) for a 5-minute familiarization in each footwear, plus an additional 110 seconds before data collection. Vertical, leg, ankle, and knee joint stiffness and vertical impact force characteristics were calculated. Mixed model with repeated measures tested differences between footwear conditions. Compared with traditional and maximalist, the minimalist shoes were associated with greater average instantaneous and average vertical loading rates (P < .050), greater vertical stiffness (P ≤ .010), and less change in leg length between initial contact and peak resultant ground reaction force (P < .050). No other differences in stiffness or impact variables were observed. The shoe cushioning paradox did not hold in this study due to a similar musculoskeletal strategy for running in traditional and maximalist footwear and running with a more rigid limb in minimalist footwear.

Gruber is with the Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA. Zhang and Pan are with the Department of Kinesiology & Center for Orthopaedic & Biomechanics Research, Boise State University, Boise, ID, USA. Li is with the Department of Health Sciences and Kinesiology, Waters College of Health Professions, Georgia Southern University, Statesboro, GA, USA.

Gruber (ahgruber@indiana.edu) is corresponding author.

Supplementary Materials

    • Supplementary Material 1 (PDF 342 KB)
    • Supplementary Material 2 (PDF 329 KB)
    • Supplementary Material 3 (PDF 328 KB)
    • Supplementary Material 4 (PDF 431 KB)
    • Supplementary Material 5 (PDF 632 KB)
  • 1.

    Clarke TE, Frederick EC, Cooper LB. The effects of shoe cushioning upon selected force and temporal parameters in running. Med Sci Sports Exerc. 1982;14(2):144144. doi:10.1249/00005768-198202000-00199

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Dixon SJ, Collop AC, Batt ME. Surface effects on ground reaction forces and lower extremity kinematics in running. Med Sci Sports Exerc. 2000;32(11):19191926. PubMed ID: 11079523 doi:10.1097/00005768-200011000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Nigg BM, Bahlsen HA, Luethi SM, Stokes S. The influence of running velocity and midsole hardness on external impact forces in heel-toe running. J Biomech. 1987;20(10):951959. doi:10.1016/0021-9290(87)90324-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Baltich J, Maurer C, Nigg BM. Increased vertical impact forces and altered running mechanics with softer midsole shoes. PLoS One. 2015;10(4):e0125196. PubMed ID: 25897963 doi:10.1371/journal.pone.0125196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    De Wit B, De Clercq D, Lenoir M. The effect of varying midsole hardness on impact forces and foot motion during foot contact in running. 1995;11(4):395.

    • Search Google Scholar
    • Export Citation
  • 6.

    Aguinaldo A, Mahar A. Impact loading in running shoes with cushioning column systems. J Appl Biomech. 2003;19(4):353360. doi:10.1123/jab.19.4.353

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Addison BJ, Lieberman DE. Tradeoffs between impact loading rate, vertical impulse and effective mass for walkers and heel strike runners wearing footwear of varying stiffness. J Biomech. 2015;48(7):13181324. doi:10.1016/j.jbiomech.2015.01.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Lohman EB, 3rd, Balan Sackiriyas KS, Swen RW. A comparison of the spatiotemporal parameters, kinematics, and biomechanics between shod, unshod, and minimally supported running as compared to walking. Phys Ther Sport. 2011;12(4):151163. PubMed ID: 22085708 doi:10.1016/j.ptsp.2011.09.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Divert C, Mornieux G, Baur H, Mayer F, Belli A. Mechanical comparison of barefoot and shod running. Int J Sports Med. 2005;26(7):593598. doi:10.1055/s-2004-821327

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Squadrone R, Gallozzi C. Biomechanical and physiological comparison of barefoot and two shod conditions in experienced barefoot runners. J Sports Med Phys Fitness. 2009;49(1):613.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Rice H, Patel M. Manipulation of foot strike and footwear increases Achilles Tendon loading during running. Am J Sports Med. 2017:363546517704429.

    • Search Google Scholar
    • Export Citation
  • 12.

    Rice HM, Jamison ST, Davis IS. Footwear matters: influence of footwear and foot strike on load rates during running. Med Sci Sports Exerc. 2016;48(12):24622468. PubMed ID: 27387292 doi:10.1249/MSS.0000000000001030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Warne JP, Smyth BP, Fagan JO, et al. Kinetic changes during a six-week minimal footwear and gait-retraining intervention in runners. J Sports Sci. 2016:19.

    • Search Google Scholar
    • Export Citation
  • 14.

    Khowailed IA, Petrofsky J, Lohman E, Daher N. Six weeks habituation of simulated barefoot running induces neuromuscular adaptations and changes in foot strike patterns in female runners. Med Sci Monit. 2015;21:20212030.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Chan ZYS, Au IPH, Lau FOY, Ching ECK, Zhang JH, Cheung RTH. Does maximalist footwear lower impact loading during level ground and downhill running? Eur J Sport Sci. 2018;18(8):10831089. PubMed ID: 29792108 doi:10.1080/17461391.2018.1472298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Sinclair J, Fau-Goodwin J, Richards J, Shore H. The influence of minimalist and maximalist footwear on the kinetics and kinematics of running. Footwear Sci.. 2016;8(1):3339. doi:10.1080/19424280.2016.1142003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Pollard CD, Ter Har JA, Hannigan JJ, Norcross MF. Influence of maximal running shoes on biomechanics before and after a 5K run. Orthop J Sports Med. 2018;6(6):2325967118775720.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kulmala JP, Kosonen J, Nurminen J, Avela J. Running in highly cushioned shoes increases leg stiffness and amplifies impact loading. Sci Rep. 2018;8(1):17496. doi:10.1038/s41598-018-35980-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Farley CT, Houdijk HH, Van Strien C, Louie M. Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. J Appl Physiol (Bethesda, Md : 1985). 1998;85(3):10441055. doi:10.1152/jappl.1998.85.3.1044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Hardin EC, van den Bogert AJ, Hamill J. Kinematic adaptations during running: effects of footwear, surface, and duration. Med Sci Sports Exerc. 2004;36(5):838844. PubMed ID: 15126719 doi:10.1249/01.MSS.0000126605.65966.40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Farley CT, Morgenroth DC. Leg stiffness primarily depends on ankle stiffness during human hopping. J Biomech. 1999;32(3):267273. doi:10.1016/S0021-9290(98)00170-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ferris DP, Louie M, Farley CT. Running in the real world: adjusting leg stiffness for different surfaces. Proc Biol Sci. 1998;265(1400):989994. PubMed ID: 9675909 doi:10.1098/rspb.1998.0388

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    McMahon TA, Greene PR. The influence of track compliance of running. In: Frederick EC, ed. Sports Shoes and Playing Surfaces. Champaign, IL: Human Kinetics; 1984:138162.

    • Search Google Scholar
    • Export Citation
  • 24.

    Kerdok AE, Biewener AA, McMahon TA, Weyand PG, Herr HM. Energetics and mechanics of human running on surfaces of different stiffnesses. J Appl Physiol. 2002;92(2):469478. doi:10.1152/japplphysiol.01164.2000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    McMahon TA, Greene PR. Fast running tracks. Sci Am. 1978;239(6):148163. doi:10.1038/scientificamerican1278-148

  • 26.

    Wright IC, Neptune RR, van Den Bogert AJ, Nigg BM. Passive regulation of impact forces in heel-toe running. Clin Biomech. 1998;13(7):521531. doi:10.1016/S0268-0033(98)00025-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Borgia B, Becker J. Lower extremity stiffness when running in minimalist, traditional, and ultra-cushioning shoes. Footwear Sci.. 2019;11(1):4554. doi:10.1080/19424280.2018.1555860

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Sinclair J, Atkins S, Taylor PJ. The effects of barefoot and shod running on limb and joint stiffness characteristics in recreational runners. J Mot Behav. 2016;48(1):7985. PubMed ID: 25978696 doi:10.1080/00222895.2015.1044493

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hamill J, Gruber AH, Derrick TR. Lower extremity joint stiffness characteristics during running with different footfall patterns. Eur J Sport Sci. 2014;14(2):130136. PubMed ID: 24533519 doi:10.1080/17461391.2012.728249

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Esculier JF, Dubois B, Dionne CE, Leblond J, Roy JS. A consensus definition and rating scale for minimalist shoes. J Foot Ankle Res. 2015;8(1):42. PubMed ID: 26300981 doi:10.1186/s13047-015-0094-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cappozzo A, Catani F, Della Croce U, Leardini A . Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech. 1995;10 :171178. PubMed ID: 11415549 doi:10.1016/0268-0033(95)91394-t

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Kristianslund E, Krosshaug T, van den Bogert AJ. Effect of low pass filtering on joint moments from inverse dynamics: implications for injury prevention. J Biomech. 2012;45(4):666671. doi:10.1016/j.jbiomech.2011.12.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Derrick TR, van den Bogert AJ, Cereatti A, Dumas R, Fantozzi S, Leardini A. ISB recommendations on the reporting of intersegmental forces and moments during human motion analysis. J Biomech. 2020;99:109533. doi:10.1016/j.jbiomech.2019.109533

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hebert-Losier K, Eriksson A. Leg stiffness measures depend on computational method. J Biomech. 2014;47(1):115121.

  • 35.

    Liew BXW, Morris S, Masters A, Netto K. A comparison and update of direct kinematic-kinetic models of leg stiffness in human running. J Biomech. 2017;64:253257. doi:10.1016/j.jbiomech.2017.09.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Morin JB, Dalleau G, Kyrolainen H, Jeannin T, Belli A. A simple method for measuring stiffness during running. J Appl Biomech. 2005;21(2):167180. PubMed ID: 16082017 doi:10.1123/jab.21.2.167

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Coleman DR, Cannavan D, Horne S, Blazevich AJ. Leg stiffness in human running: Comparison of estimates derived from previously published models to direct kinematic-kinetic measures. J Biomech. 2012;45(11):19871991. doi:10.1016/j.jbiomech.2012.05.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    McMahon TA, Cheng GC. The mechanics of running: how does stiffness couple with speed? J Biomech. 1990;23 23:6578. doi:10.1016/0021-9290(90)90042-2

  • 39.

    Hamill J, Moses M, Seay J. Lower extremity joint stiffness in runners with low back pain. Res Sports Med. 2009;17(4):260273. PubMed ID: 19967604 doi:10.1080/15438620903352057

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Willy RW, Pohl MB, Davis IS. Calculation of vertical load rates in the absence of vertical impact peaks. Paper presented at: The North American Congress Of Biomechanics 2008. Ann Arbor, MI, USA.

    • Search Google Scholar
    • Export Citation
  • 41.

    Milner CE, Ferber R, Pollard CD, Hamill J, Davis IS. Biomechanical factors associated with tibial stress fracture in female runners. Med Sci Sports Exerc. 2006;38(2):323328. PubMed ID: 16531902 doi:10.1249/01.mss.0000183477.75808.92

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Laughton CA, Davis IS, Hamill J. Effect of strike pattern and orthotic intervention on tibial shock during running. J Appl Biomech. 2003;19(2):153168. doi:10.1123/jab.19.2.153

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Derrick TR, Caldwell GE, Hamill J. Modeling the stiffness characteristics of the human body while running with various stride lengths. J Appl Biomech. 2000;16(1):3651. doi:10.1123/jab.16.1.36

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Heiderscheit BC, Chumanov ES, Michalski MP, Wille CM, Ryan MB. Effects of step rate manipulation on joint mechanics during running. Med Sci Sports Exerc. 2011;43(2):296302. PubMed ID: 20581720 doi:10.1249/MSS.0b013e3181ebedf4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Cavanagh PR, Lafortune MA. Ground reaction forces in distance running. J Biomech. 1980;13(5):397406. doi:10.1016/0021-9290(80)90033-0

  • 46.

    Glass GV, Peckham PD, Sanders JR. Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. Rev Educ Res. 1972;42(3):237288. doi:10.3102/00346543042003237

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863. PubMed ID: 24324449 doi:10.3389/fpsyg.2013.00863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale (NJ): Lawrence Erlbaum Associates; 1988.

  • 49.

    Malisoux L, Delattre N, Urhausen A, Theisen D. Shoe cushioning influences the running injury risk according to body mass: a randomized controlled trial involving 848 recreational runners. Am J Sports Med. 2020;48(2):473480. PubMed ID: 31877062 doi:10.1177/0363546519892578

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Arampatzis A, Bruggemann GP, Metzler V. The effect of speed on leg stiffness and joint kinetics in human running. J Biomech. 1999;32(12):13491353. doi:10.1016/S0021-9290(99)00133-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Agresta C, Kessler S, Southern E, Goulet GC, Zernicke R, Zendler JD. Immediate and short-term adaptations to maximalist and minimalist running shoes. Footwear Sci.. 2018;10(2):95107. doi:10.1080/19424280.2018.1460624

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Hannigan JJ, Pollard CD. Differences in running biomechanics between a maximal, traditional, and minimal running shoe. J Sci Med Sport. 2020;23(1):1519. PubMed ID: 31501022 doi:10.1016/j.jsams.2019.08.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Mercer JA, Horsch S. Heel–toe running: A new look at the influence of foot strike pattern on impact force. J Exerc Sci Fitness. 2015;13(1):2934. doi:10.1016/j.jesf.2014.12.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Stiffler-Joachim MR, Wille CM, Kliethermes SA, Johnston W, Heiderscheit BC. Foot angle and loading rate during running demonstrate a nonlinear relationship. Med Sci Sports Exerc. 2019;51(10):20672072. PubMed ID: 31525170 doi:10.1249/MSS.0000000000002023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Stefanyshyn DJ, Nigg BM. Influence of midsole bending stiffness on joint energy and jump height performance. Med Sci Sports Exerc. 2000;32(2):471476. PubMed ID: 10694134 doi:10.1097/00005768-200002000-00032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Kersting UG, Bruggemann GP. Midsole material-related force control during heel-toe running. Res Sports Med. 2006;14(1):117. PubMed ID: 16700401 doi:10.1080/15438620500528158

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    McNair PJ, Marshall RN. Kinematic and kinetic parameters associated with running in different shoes. Br J Sports Med. 1994;28(4):256260. PubMed ID: 7894957 doi:10.1136/bjsm.28.4.256

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Farley CT, Glasheen J, McMahon TA. Running springs: speed and animal size. J Exp Biol. 1993;185(1):7186. PubMed ID: 8294853 doi:10.1242/jeb.185.1.71

  • 59.

    He JP, Kram R, McMahon TA. Mechanics of running under simulated low gravity. J Appl Physiol. 1991;71(3):863870. doi:10.1152/jappl.1991.71.3.863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Mundermann A, Stefanyshyn DJ, Nigg BM. Relationship between footwear comfort of shoe inserts and anthropometric and sensory factors. Med Sci Sports Exerc. 2001;33(11):19391945. PubMed ID: 11689747

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Latash ML, Zatsiorsky VM. Joint stiffness—myth or reality. Hum Mov Sci. 1993;12(6):653692. doi:10.1016/0167-9457(93)90010-M

  • 62.

    Shorten M, Mientjes MI. The ‘heel impact’ force peak during running is neither ‘heel’ nor ‘impact’ and does not quantify shoe cushioning effects. Footwear Sci. 2011;3(1):4158. doi:10.1080/19424280.2010.542186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Sinclair J. The influence of minimalist, maximalist and conventional footwear on impact shock attenuation during running. Move Sport Sci – Sci Motricité. 2017(95):5964.

    • Search Google Scholar
    • Export Citation
  • 64.

    Gerritsen KG, van den Bogert AJ, Nigg BM. Direct dynamics simulation of the impact phase in heel-toe running. J Biomech. 1995;28(6):661668. doi:10.1016/0021-9290(94)00127-P

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Scott SH, Winter DA. Internal forces of chronic running injury sites. Med Sci Sports Exerc. 1990;22(3):357369. PubMed ID: 2381304 doi:10.1249/00005768-199006000-00013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Messier SP, Martin DF, Mihalko SL, et al. A 2-year prospective cohort study of overuse running injuries: the runners and injury longitudinal study (TRAILS). Am J Sports Med. 2018;46(9):22112221. PubMed ID: 29791183 doi:10.1177/0363546518773755

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Schwellnus MP, Jordaan G, Noakes TD. Prevention of common overuse injuries by the use of shock absorbing insoles—a prospective-study. Am J Sports Med. 1990;18(6):636641. PubMed ID: 2285093 doi:10.1177/036354659001800614

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    House C, Reece A, Roiz de Sa D. Shock-absorbing insoles reduce the incidence of lower limb overuse injuries sustained during Royal Marine training. Mil Med. 2013;178(6):683689. PubMed ID: 23756077 doi:10.7205/MILMED-D-12-00361

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Theisen D, Malisoux L, Genin J, Delattre N, Seil R, Urhausen A. Influence of midsole hardness of standard cushioned shoes on running-related injury risk. Br J Sports Med. 2014;48(5):371376. PubMed ID: 24043665 doi:10.1136/bjsports-2013-092613

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Malisoux L, Delattre N, Meyer C, Gette P, Urhausen A, Theisen D. Effect of shoe cushioning on landing impact forces and spatiotemporal parameters during running: results from a randomized trial including 800+ recreational runners. Eur J Sport Sci. 2020:19. doi:10.1080/17461391.2020.1809713

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 535 535 462
Full Text Views 579 579 71
PDF Downloads 467 467 42