An Electromyographically Driven Cervical Spine Model in OpenSim

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Waterloo
  • | 2 MyAbilities Technologies Inc
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

Relatively few biomechanical models exist aimed at quantifying the mechanical risk factors associated with neck pain. In addition, there is a need to validate spinal-rhythm techniques for inverse dynamics spine models. Therefore, the present investigation was 3-fold: (1) the development of a cervical spine model in OpenSim, (2) a test of a novel spinal-rhythm technique based on minimizing the potential energy in the passive tissues, and (3) comparison of an electromyographically driven approach to estimating compression and shear to other cervical spine models. The authors developed ligament force–deflection and intervertebral joint moment–angle curves from published data. The 218 Hill-type muscle elements, representing 58 muscles, were included and their passive forces validated against in vivo data. Our novel spinal-rhythm technique, based on minimizing the potential energy in the passive tissues, disproportionately assigned motion to the upper cervical spine that was not physiological. Finally, using kinematics and electromyography collected from 8 healthy male volunteers, the authors calculated the compression at C7–T1 as a function of the head–trunk Euler angles. Differences from other models varied from 25.5 to 368.1 N. These differences in forces may result in differences in model geometry, passive components, number of degrees of freedom, or objective functions.

Barrett, Dickerson, and Callaghan are with the Department of Kinesiology and Health Science, Faculty of Health, University of Waterloo, Waterloo, ON, Canada. McKinnon is with MyAbilities Technologies Inc, Mississauga, ON, Canada.

Callaghan (jack.callaghan@uwaterloo.ca) is corresponding author.

Supplementary Materials

    • Supplementary Table S1 (PDF 189 KB)
    • Supplementary Table S2 (PDF 181 KB)
    • Supplementary Table S3 (PDF 186 KB)
    • Supplementary Table S4 (PDF 180 KB)
    • Supplementary Table S5 (PDF 295 KB)
    • Supplementary Table S6 (PDF 370 KB)
    • Supplementary Table S7 (PDF 314 KB)
  • 1.

    Côté P, van der Velde G, Cassidy JD, et al. The burden and determinants of neck pain in whiplash-associated disorders after traffic collisions. Eur Spine J. 2008;17(1):5259. doi:10.1007/s00586-008-0625-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Côté P, Cassidy JD, Carroll L. The saskatchewan health and back pain survey. Spine. 1998;23(15):16891698. PubMed ID: 9704377 doi:10.1097/00007632-199808010-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Côté P, Cassidy DJ, Carroll LJ, Kristman V. The annual incidence and course of neck pain in the general population: a population-based cohort study. Pain. 2004;112(3):267273. PubMed ID: 15561381 doi:10.1016/j.pain.2004.09.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Berolo S, Wells RP, Amick BC. Musculoskeletal symptoms among mobile hand-held device users and their relationship to device use: a preliminary study in a Canadian university population. Appl Ergon. 2011;42(2):371378. PubMed ID: 20833387 doi:10.1016/j.apergo.2010.08.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Douglas EC, Gallagher KM. Are the neck positions and muscle activity observed when reading a tablet similar to that of the cervical flexion-relaxation onset? IISE Trans Occup Ergon Hum Factors. 2018;6(1):4350. doi:10.1080/24725838.2018.1450310

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Snijders CJ, Hoek van Dijke GA, Roosch ER. A biomechanical model for the analysis of the cervical spine in static postures. J Biomech. 1991;24(9):783792. PubMed ID: 1752862 doi:10.1016/0021-9290(91)90303-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Moroney SP, Schultz AB, Miller JA. Analysis and measurement of neck loads. J Orthop Res. 1988;6(5):713720. PubMed ID: 3404328 doi:10.1002/jor.1100060514

  • 8.

    Mathys R, Ferguson SJ. Simulation of the effects of different pilot helmets on neck loading during air combat. J Biomech. 2012;45(14):23622367. PubMed ID: 22840756 doi:10.1016/j.jbiomech.2012.07.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Williams JL, Belytschko TB. A three-dimensional model of the human cervical spine for impact simulation. J Biomech Eng. 1983;105(4):321331. PubMed ID: 6645440 doi:10.1115/1.3138428

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    van der Horst MJ. Human Head Neck Response in Frontal, Lateral and Rear end Impact Loading—Modelling and Validation. [Thesis]. Eindhoven, Netherlands: Eindhoven University of Technology; 2002. doi:10.6100/ir554047

    • Search Google Scholar
    • Export Citation
  • 11.

    Garcia T. A biomechanical evaluation of whiplash using a multi-body dynamic model. J Biomech Eng. 2003;125(2):254. PubMed ID: 12751288 doi:10.1115/1.1556856

  • 12.

    Stemper BD, Yoganandan N, Pintar FA. Validation of a head-neck computer model for whiplash simulation. Med Biol Eng Comput. 2004;42(3):333338. PubMed ID: 15191078 doi:10.1007/BF02344708

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    de Jager M. Mathematical Head-Neck Models for Acceleration Impacts. [Thesis]. Eindhoven University of Technology; 1996.

  • 14.

    Brolin K, Halldin P. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics. Spine. 2004;29(4):376385. PubMed ID: 15094533 doi:10.1097/01.BRS.0000090820.99182.2D

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    DeWit JA, Cronin DS. Cervical spine segment finite element model for traumatic injury prediction. J Mech Behav Biomed Mater. 2012;10:138150. PubMed ID: 22520426 doi:10.1016/j.jmbbm.2012.02.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Panzer MB, Fice JB, Cronin DS. Cervical spine response in frontal crash. Med Eng Phys. 2011;33(9):11471159. PubMed ID: 21665513 doi:10.1016/j.medengphy.2011.05.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Choi H, Vanderby R. Muscle forces and spinal loads at C4/5 level during isometric voluntary efforts. Med Sci Sports Exerc. 2000;32(4):830838. PubMed ID: 10776903 doi:10.1097/00005768-200004000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Netto KJ, Burnett AF, Green JP, Rodrigues JP. Validation of an EMG-driven, graphically based isometric musculoskeletal model of the cervical spine. J Biomech Eng. 2008;130(3):031014. doi:10.1115/1.2913234

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cheng CH, Chien A, Hsu WL, Chen CPC, Cheng HYK. Investigation of the differential contributions of superficial and deep muscles on cervical spinal loads with changing head postures. PLoS One. 2016;11(3):112. doi:10.1371/journal.pone.0150608

    • Search Google Scholar
    • Export Citation
  • 20.

    Alizadeh M, Aurand A, Knapik GG, et al. An electromyography-assisted biomechanical cervical spine model: model development and validation. Clin Biomech. 2020;80(January):105169. doi:10.1016/j.clinbiomech.2020.105169

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    McGill SM, Norman RW. Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine. 1986;11(7):666678. PubMed ID: 3787338

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    White AA, Panjabi MM. Clinical Biomechanics of the Spine. Vol 2. Philadelphia, PA: Lippincott Company; 1990.

  • 23.

    Vasavada AN, Hughes E, Nevins DD, Monda SM, Lin DC. Effect of subject-specific vertebral position and head and neck size on calculation of spine musculoskeletal moments. Ann Biomed Eng. 2018;46(11):18441856. PubMed ID: 29987540 doi:10.1007/s10439-018-2084-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cholewicki J, McGill SM. EMG assisted optimization: a hybrid approach for estimating muscle forces in an indeterminate biomechanical model. J Biomech. 1994;27(10):12871289. PubMed ID: 7962016 doi:10.1016/0021-9290(94)90282-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Gagnon D, Arjmand N, Plamondon A, Shirazi-Adl A, Larivière C. An improved multi-joint EMG-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine. J Biomech. 2011;44(8):15211529. PubMed ID: 21439569 doi:10.1016/j.jbiomech.2011.03.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Mattucci SF, Moulton JA, Chandrashekar N, Cronin DS. Strain rate dependent properties of younger human cervical spine ligaments. J Mech Behav Biomed Mater. 2012;10:216226. PubMed ID: 22520433 doi:10.1016/j.jmbbm.2012.02.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Camacho DL, Nightingale RW, Robinette JJ, Vanguri SK, Coates DJ, Myers BS. Experimental flexibility measurements for the development of a computational head-neck model validated for near-vertex head impact. SAE Transaction. 1997;106:39894002. doi:10.4271/973345

    • Search Google Scholar
    • Export Citation
  • 28.

    Ivancic PC. Effects of orthoses on three-dimensional load-displacement properties of the cervical spine. Eur Spine J. 2013;22(1):169177. PubMed ID: 23090094 doi:10.1007/s00586-012-2552-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Panjabi MM, Crisco JJ, Vasavada A, et al. Mechanical properties of the human cervical spine as shown by three-dimensional load–displacement curves. Spine. 2001;26(24):26922700. PubMed ID: 11740357 doi:10.1097/00007632-200112150-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Wheeldon JA, Pintar FA, Knowles S, Yoganandan N. Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine. J Biomech. 2006;39(2):375380. PubMed ID: 16321642 doi:10.1016/j.jbiomech.2004.11.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    McGill SM, Jones K, Bennett G, Bishop PJ. Passive stiffness of the human neck in flexion, extension, and lateral bending. Clin Biomech. 1994;9(3):193198. doi:10.1016/0268-0033(94)90021-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Mitsuhashi N, Fujieda K, Tamura T, Kawamoto S. BodyParts3D: 3D structure database for anatomical concepts. Nucleic Acids Res. 2009;37(suppl 1):D782D785. doi:10.1093/nar/gkn613

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Cignoni P, Corsini M, Ranzuglia G. MeshLab: an open-source 3D mesh processing system. Ercim News. 2008;73(6):4748.

  • 34.

    Panjabi MM, Oxland T, Parks E. Quantitative anatomy of cervical spine ligaments. Part II. Middle and lower cervical spine. J Spinal Disord. 1991;4(3):277285. PubMed ID: 1802158 doi:10.1097/00002517-199109000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Panjabi MM, Oxland T, Parks E. Quantitative anatomy of cervical spine ligaments. Part I. Upper cervical spine. J Spinal Disord. 1991;4(3):270276. PubMed ID: 1802157 doi:10.1097/00002517-199109000-00003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Nissan M, Gilad I. The cervical and lumbar vertebrae—an anthropometric model. Eng Med. 1984;13(3):111114. doi:10.1243/emed_jour_1984_013_030_02

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Doherty BJ, Heggeness MH. The quantitative anatomy of the Atlas. Spine. 1994;19:24972500. doi:10.1097/00007632-199411001-00001

  • 38.

    Doherty BJ, Heggeness MH. Quantitative anatomy of the second cervical vertebra. Spine. 1995;20(5):513517. PubMed ID: 7604318 doi:10.1097/00007632-199503010-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Marlow EJ, Pastor RF. Sex determination using the second cervical vertebra—a test of the method. J Forensic Sci. 2011;56(1):165169. PubMed ID: 20735699 doi:10.1111/j.1556-4029.2010.01543.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Heller JG, Alson MD, Schaffler MB, Garfin SR. Quantitative internal dens morphology. Spine. 1992;17(8):861866. PubMed ID: 1523487 doi:10.1097/00007632-199208000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Benfer RA. Morphometric analysis of Cartesian coordinates of the human skull. Am J Phys Anthropol. 1975;42(3):371382. PubMed ID: 1096639 doi:10.1002/ajpa.1330420305

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Dvorak J, Panjabi MM, Novotny JE, Antinnes JA. In vivo flexion/extension of the normal cervical spine. J Orthop Res. 1991;9(6):828834. PubMed ID: 1919845 doi:10.1002/jor.1100090608

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Barrett JM, Callaghan JP. A mechanistic damage model for ligaments. J Biomech. 2017;61:1117. PubMed ID: 28728790 doi:10.1016/j.jbiomech.2017.06.039

  • 44.

    Moroney SP, Schultz AB, Miller JA, Andersson GB. Load-displacement properties of lower cervical spine motion segments. J Biomech. 1988;21(9):769779. PubMed ID: 3053721 doi:10.1016/0021-9290(88)90285-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Virtanen P, Gommers R, Oliphant TE, et al. Der Walt SJ. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2007;17(3):261–272. doi:10.1038/s41592-019-0686-2

    • Search Google Scholar
    • Export Citation
  • 46.

    Yoganandan N, Stemper BD, Pintar FA, Baisden JL, Shender BS, Paskoff G. Normative segment-specific axial and coronal angulation corridors of subaxial cervical column in axial rotation. Spine. 2008;33(5):490496. PubMed ID: 18317191 doi:10.1097/BRS.0b013e3181657f67

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Yoganandan N, Pintar FA, Stemper BD, Wolfla CE, Shender BS, Paskoff G. Level-dependent coronal and axial moment-rotation corridors of degeneration-free cervical spines in lateral flexion. J Bone Joint Surg Am. 2007;89(5):10661074. doi:10.2106/JBJS.F.00200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Millard M, Uchida T, Seth A, Delp SL. Flexing computational muscle: modeling and simulation of musculotendon dynamics. J Biomech Eng. 2013;135(2):021005. doi:10.1115/1.4023390

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Kamibayashi LK, Richmond FJR. Morphometry of human neck muscles. Spine. 1998;23(12):13141323. PubMed ID: 9654620 doi:10.1097/00007632-199806150-00005

  • 50.

    Chancey VC, Nightingale RW, Van Ee CA, Knaub KE, Myers BS. Improved estimation of human neck tensile tolerance: reducing the range of reported tolerance using anthropometrically correct muscles and optimized physiologic initial conditions. Stapp Car Crash J. 2003;47(October):135153.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Pearson WG, Langmore SE, Zumwalt AC, et al. Evaluating the structural properties of suprahyoid muscles and their potential for moving the hyoid. Dysphagia. 2010;26(4):345351. PubMed ID: 21069388 doi:10.1007/s00455-010-9315-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    McClure P, Siegler S, Nobilini R. Three-dimensional flexibility characteristics of the human cervical spine in vivo. Spine. 1998;23(2):216223. PubMed ID: 9474729 doi:10.1097/00007632-199801150-00013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Ordway N, Seymour R, Donelson R, Hojnowski L, Edwards T. Cervical flexion, extension, protrusion, and retraction: a radiographic segmental analysis. Spine. 1999;24(3):240247. PubMed ID: 10025018 doi:10.1097/00007632-199902010-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Anderst WJ, Iii WFD, Lee JY, Kang JD. Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading. J Biomech. 2015;48(7):12861293. PubMed ID: 25814180 doi:10.1016/j.jbiomech.2015.02.049

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Anderst WJ, Donaldson WF, Lee JY, Kang JD. Cervical motion segment contributions to head motion during flexion\extension, lateral bending, and axial rotation. Spine J. 2015;15(12):25382543. PubMed ID: 26334229 doi:10.1016/j.spinee.2015.08.042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Lysell E. Motion in the cervical spine: an experimental study on autopsy specimens. Acta Orthop. 1969;40(suppl 123):161. doi:10.3109/ort.1969.40.suppl-123.01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Panjabi MM, Dvorak J, Duranceau J, Yamamoto I. Three-Dimensional Movements of the Upper Cervical Spine. In: Baumann JU, Herron RE, eds. Bellingham, WA: SPIE;  1988:370377. doi:10.1117/12.950491

    • Search Google Scholar
    • Export Citation
  • 58.

    Panjabi MM, Summers DJ, Pelker RR, Videman T, Friedlaender GE, Southwick WO. Three-dimensional load-displacement curves due to froces on the cervical spine. J Orthop Res. 1986;4(2):152161. PubMed ID: 3712124

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Nightingale RW, Carol Chancey V, Ottaviano D, et al. Flexion and extension structural properties and strengths for male cervical spine segments. J Biomech. 2007;40(3):535542. PubMed ID: 16620838 doi:10.1016/j.jbiomech.2006.02.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Bayoglu R, Galibarov PE, Verdonschot N, Koopman B, Homminga J. Twente spine model: a thorough investigation of the spinal loads in a complete and coherent musculoskeletal model of the human spine. Med Eng Phys. 2019;68:3545. PubMed ID: 31010615 doi:10.1016/j.medengphy.2019.03.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Hoek van Dijke GA, Snijders CJ, Roosch ER, Burgers PI. Analysis of biomechanical and ergonomic aspects of the cervical spine in F-16 flight situations. J Biomech. 1993;26(9):10171025. PubMed ID: 8408084 doi:10.1016/S0021-9290(05)80001-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Goel VK, Clark CR, Gallaes K, Liu YK. Moment-rotation relationships of the ligamentous occipito-atlanto-axial complex. J Biomech. 1988;21(8):673680. PubMed ID: 3170621 doi:10.1016/0021-9290(88)90204-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Wen N, Lavaste F, Santin JJ, Lassau JP. Three-dimensional biomechanical properties of the human cervical spine in vitro. Eur Spine J. 1993;2(1):211. PubMed ID: 20058441 doi:10.1007/bf00301048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Wu S, Kuo L, Lan HH, Tsai S. Segmental percentage contributions of cervical spine during different motion ranges of flexion and extension. J Spinal Disord Tech. 2010;23(4):278284. PubMed ID: 20068468

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Keshner EA, Campbell D, Katz RT, Peterson BW. Neck muscle activation patterns in humans during isometric head stabilization. Exp Brain Res. 1989;75(2):335344. PubMed ID: 2721613 doi:10.1007/BF00247939

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Schüldt K, Ekholm J, Harms-Ringdahl K, Németh G, Arborelius UP. Effects of changes in sitting work posture on static neck and shoulder muscle activity. Ergonomics. 1986;29(12):15251537. PubMed ID: 3816746 doi:10.1080/00140138608967266

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    McKinnon CD, Dickerson CR, Laing ACT, Callaghan JP. Neck muscle activity during simulated in-flight static neck postures and helmet mounted equipment. Occup Ergon. 2016;13(3–4):119130. doi:10.3233/OER-170245

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Winter D. Biomedical model relating EMG to changing isometric tension. Presented at: 11th International Conference on Medical and Biological Engineering, Ottawa, Canada. 1976:362363.

    • Search Google Scholar
    • Export Citation
  • 69.

    Winters JM, Woo SL-Y. Multiple Muscle Systems. New York City, NY: Springer; 1990. doi:10.1007/978-1-4613-9030-5

  • 70.

    Winter D. Biomechanics and Motor Control of Human Movement. Hoboken, NJ: John Wiley & Sons Inc; 1990.

  • 71.

    Almosnino S, Pelland L, Pedlow SV, Stevenson JM. Between-day reliability of electromechanical delay of selected neck muscles during performance of maximal isometric efforts. Sports Med Arthrosc Rehabil Ther Technol. 2009;1(1):22. PubMed ID: 19775461 doi:10.1186/1758-2555-1-22

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Lu WW, Bishop PJ. Electromyographic activity of the cervical musculature during dynamic lateral bending. Spine. 1996;21(21):24432449. PubMed ID: 8923629 doi:10.1097/00007632-199611010-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Diamond S, Boyd S. CVXPY: a python-embedded modeling language for convex optimization. J Mach Learn Res. 2016;17(83):15.

  • 74.

    Wu G, Siegler S, Allard P, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech. 2002;35(4):543548. PubMed ID: 11934426 doi:10.1016/S0021-9290(01)00222-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    de Leva P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech. 1996;29(9):12231230. PubMed ID: 8872282 doi:10.1016/0021-9290(95)00178-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Penning L. Normal movements of the cervical spine. Am J Roentgenol. 1978;130(2):317326. PubMed ID: 414586 doi:10.2214/ajr.130.2.317

  • 77.

    Dvorak J, Froehlich D, Penning L, Baumgartner H, Panjabi MM. Functional radiographic diagnosis of the cervical spine: flexion/extension. Spine (Phila Pa 1976). 1988;13(7):748755. PubMed ID: 3194782 doi:10.1097/00007632-198807000-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Dvorak J, Panjabi MM, Grob D, Novotny JE, Antinnes JA. Clinical validation of functional flexion/extension radiographs of the cervical spine. Spine (Phila Pa 1976). 1993;18(1):120127. PubMed ID: 8434312 doi:10.1097/00007632-199301000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Penning L, Wilmink JT. Rotation of the cervical spine. A CT study in normal subjects. Spine (Phila Pa 1976). 1987;12(8):732738. PubMed ID: 3686228 doi:10.1097/00007632-198710000-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Dvorak J, Panjabi MM, Gerber M, Wichmann W. CT-functional diagnostics of the rotatory instability of upper cervical spine. Spine (Phila Pa 1976). 1987;12(3):197205. PubMed ID: 3589813 doi:10.1097/00007632-198704000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Mimura M, Moriya H, Watanabe T, Takahashi K, Yamagata M, Tamaki T. Three-dimensional motion analysis of the cervical spine with special reference to the axial rotation. Spine (Phila Pa 1976). 1989;14(11):11351139. PubMed ID: 2603046 doi:10.1097/00007632-198911000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Ishii T, Mukai Y, Hosono N, et al. Kinematics of the upper cervical spine in rotation: in vivo three-dimensional analysis. Spine (Phila Pa 1976). 2004;29(7):E139E144. PubMed ID: 15087810 doi:10.1097/01.brs.0000116998.55056.3c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Ishii T, Mukai Y, Hosono N, et al. Kinematics of the subaxial cervical spine in rotation in vivo three-dimensional analysis. Spine (Phila Pa 1976). 2004;29(24):28262831. PubMed ID: 15599286 doi:10.1097/01.brs.0000147806.31675.6b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Zhao X, Wu Z, Han B, Yan Y, Zhang Y, Lei W. Three-dimensional analysis of cervical spine segmental motion in rotation. Arch Med Sci AMS. 2013;9(3):515. PubMed ID: 23847675 doi:10.5114/aoms.2013.35325

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Salem W, Lenders C, Mathieu J, Hermanus N, Klein P. In vivo three-dimensional kinematics of the cervical spine during maximal axial rotation. Man Ther. 2013;18(4):339344. PubMed ID: 23375147 doi:10.1016/j.math.2012.12.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Lin C-C, Lu T-W, Wang T-M, Hsu C-Y, Hsu S-J, Shih T-F. In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach. J Biomech. 2014;47(13):33103317. PubMed ID: 25218506 doi:10.1016/j.jbiomech.2014.08.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Ishii T, Mukai Y, Hosono N, et al. Kinematics of the cervical spine in lateral bending: in vivo three-dimensional analysis. Spine (Phila Pa 1976). 2006;31(2):155160. PubMed ID: 16418633 doi:10.1097/01.brs.0000195173.47334.1f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Vasavada AN, Li S, Delp SL. Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles. Spine. 1998;23(4):412422. PubMed ID: 9516695 doi:10.1097/00007632-199802150-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Mattucci SFE, Moulton JA, Chandrashekar N, Cronin DS. Strain rate dependent properties of human craniovertebral ligaments. J Mech Behav Biomed Mater. 2013;23:7179. PubMed ID: 23665484 doi:10.1016/j.jmbbm.2013.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Hicks JL, Uchida TK, Seth A, Rajagopal A, Delp S. Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of human movement. J Biomech Eng. 2015;137(2):020905. doi:10.1115/1.4029304

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Vasavada AN, Nevins DD, Monda SM, et al. Gravitational demand on the neck musculature during tablet computer use. Ergonomics. 2015;58(6):9901004. PubMed ID: 25643042 doi:10.1080/00140139.2015.1005166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Douglas EC, Gallagher KM. The influence of a semi-reclined seated posture on head and neck kinematics and muscle activity while reading a tablet computer. Appl Ergon. 2017;60:342347. PubMed ID: 28166894 doi:10.1016/j.apergo.2016.12.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Crowninshield RD, Brand RA. A physiologically based criterion of muscle force prediction in locomotion. J Biomech. 1981;14(11):793801. PubMed ID: 7334039 doi:10.1016/0021-9290(81)90035-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Vasavada AN, Danaraj J, Siegmund GP. Head and neck anthropometry, vertebral geometry and neck strength in height-matched men and women. J Biomech. 2008;41(1):114121. PubMed ID: 17706225 doi:10.1016/j.jbiomech.2007.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Mortensen JD, Vasavada AN, Merryweather AS. The inclusion of hyoid muscles improve moment generating capacity and dynamic simulations in musculoskeletal models of the head and neck. PLoS One. 2018;13(6):e0199912. doi:10.1371/journal.pone.0199912

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Roos PE, Vasavada A, Zheng L, Zhou X. Neck musculoskeletal model generation through anthropometric scaling. PLoS One. 2020;15(1):e0219954. doi:10.1371/journal.pone.0219954

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Vasavada AN, Brault J, Siegmund G. Musculotendon and fascicle strains in anterior and posterior neck muscles during whiplash injury. Spine. 2007;32(7):756765. PubMed ID: 17414909 doi:10.1097/01.brs.0000259058.00460.69

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Gallagher KM, Vasavada AN, Fischer L, Douglas EC. Cervical spine musculotendon lengths when reading a tablet in three seated positions. J Appl Biomech. 2021;37(2):122129. doi:10.1123/jab.2020-0062

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Panzer MB, Cronin DS. C4-C5 segment finite element model development, validation, and load-sharing investigation. J Biomech. 2009;42(4):480490. PubMed ID: 19200548 doi:10.1016/j.jbiomech.2008.11.036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Bogduk N, Mercer S. Biomechanics of the cervical spine. I: normal kinematics. Clin Biomech. 2000;15(9):633648. doi:10.1016/S0268-0033(00)00034-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101.

    Naserkhaki S, Arjmand N, Shirazi-Adl A, Farahmand F, El-Rich M. Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model. J Biomech. 2018;70:3342. PubMed ID: 28549604 doi:10.1016/j.jbiomech.2017.05.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 273 273 255
Full Text Views 372 372 29
PDF Downloads 246 246 5