Estimation of Gait Independence Using a Tri-Axial Accelerometer in Stroke Patients

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $189.00

The purpose of this study was to clarify whether a gait analysis using an accelerometer could estimate gait independence. Eighty-six stroke patients and 21 healthy control subjects participated in this study. Stroke patients were identified as dependent or independent based on their gait ability. The acceleration of the trunk and bilateral thigh was measured using three wireless sensors during walking. The root mean square, gait regularity, and symmetry were calculated from the acceleration to estimate gait quality. ANCOVA showed that gait regularity of the trunk and bilateral thigh were significantly lowest in the dependent group, regardless of gait velocity. A logistic regression analysis showed that the regularity and root mean square of the anteroposterior acceleration of the unaffected thigh were the key factors for estimating gait independence. This study suggests that an acceleration-based gait analysis facilities gait independence estimation, and is a useful tool during the rehabilitation of stroke patients.

Kijima is with Miyakonojo Core Academy, Miyakonojo, Miyazaki, Japan. Kiyama, Maeda, and Ohshige are with the Faculty of Medicine, Kagoshima University, Kagoshima, Japan. Sekine and Tamura are with the Faculty of Biomedical Engineering, Osaka Electro-Communication University, Neyagawa, Japan. Fujimoto is with Fujimoto Medical System, Miyakonojo, Miyazaki, Japan.

Address author correspondence to Ryoji Kiyama at kiyama@health.nop.kagoshima-u.ac.jp.
  • Awad, L.N., Palmer, J.A., Pohlig, R.T., Binder-Macleod, S.A., & Reisman, D.S. (2015). Walking speed and step length asymmetry modify the energy cost of walking after stroke. Neurorehabilitation and Neural Repair, 29(5), 416423. PubMed doi:10.1177/1545968314552528

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balasubramanian, C.K., Neptune, R.R., & Kautz, S.A. (2010). Foot placement in a body reference frame during walking and its relationship to hemiparetic walking performance. Clinical Biomechanics, 25(5), 483490. PubMed doi:10.1016/j.clinbiomech.2010.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunnstrom, S. (1966). Motor testing procedures in hemiplegia: Based on sequential recovery stages. Physical Therapy, 46(4), 357375. PubMed

  • Cohen J. (Ed.) (1988). The analysis of variance and covariance. In Statistical power analysis for the behavioral sciences (2nd ed., pp. 273288). Hillsdale, NJ: Lawrence Erlbaum Associates.

    • Search Google Scholar
    • Export Citation
  • Combs, S.A., Van Puymbroeck, M., Altenburger, P.A., Miller, K.K., Dierks, T.A., & Schmid, A.A. (2013). Is walking faster or walking farther more important to persons with chronic stroke? Disability and Rehabilitation, 35(10), 860867. PubMed doi:10.3109/09638288.2012.717575

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Quervain, I.A., Simon, S.R., Leurgans, S., Pease, W.S., & McAllister, D. (1996). Gait pattern in the early recovery period after stroke. The Journal of Bone and Joint Surgery. American Volume, 78(10), 15061514. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzales, J.U., Shephard, J., & Dubey, N. (2015). Steps per day, daily peak stepping cadence, and walking performance in older adults. Journal of Aging and Physical Activity, 23(3), 395400. PubMed doi:10.1123/japa.2014-0049

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granger, C.V., Hamilton, B.B., Keith, R.A., Zielezny, M., & Sherwin, F.S. (1986). Advances in functional assessment in medical rehabilitation. Topics in Geriatric Rehabilitation, 1(3), 5974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henriksen, M., Lund, H., Moe-Nilssen, R., Bliddal, H., & Danneskiod-Samsøe, B. (2004). Test–retest reliability of trunk accelerometric gait analysis. Gait & Posture, 19(3), 288297. PubMed doi:10.1016/S0966-6362(03)00069-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higashi, Y., Yamakoshi, K., Fujimoto, T., Sekine, M., & Tamura, T. (2008). Quantitative evaluation of movement using the timed up-and-go test. IEEE Engineering in Medicine and Biology Magazine, 27(4), 3846. doi:10.1109/MEMB.2008.919494

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodt-Billington, C., Helbostad, J.L., & Moe-Nilssen, R. (2008). Should trunk movement or footfall parameters quantify gait asymmetry in chronic stroke patients? Gait & Posture, 27(4), 552558. PubMed doi:10.1016/j.gaitpost.2007.07.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, P.-C., Dingwell, J.B., Higginson, J.S., & Binder-Macleod, S. (2014). Dynamic instability during post-stroke hemiparetic walking. Gait & Posture, 40(3), 457463. PubMed doi:10.1016/j.gaitpost.2014.05.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kautz, S.A., Patten, C., & Neptune, R.R. (2006). Does unilateral pedaling activate a rhythmic locomotor pattern in the nonpedaling leg in post-stroke hemiparesis? Journal of Neurophysiology, 95(5) 31543163. PubMed doi:10.1152/jn.00951.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavanagh, J.J. (2009). Lower trunk motion and speed-dependence during walking. Journal of NeuroEngineering and Rehabilitation, 6(1), 9. doi:10.1186/1743-0003-6-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, C.M., & Eng, J.J. (2004). Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: Relationship to walking speed. Gait & Posture, 20(2), 140146. PubMed doi:10.1016/j.gaitpost.2003.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobsar, D., Olson, C., Paranjape, R., Hadjistavropoulos, T., & Barden, J.M. (2014). Evaluation of age-related differences in the stride-to-stride fluctuations, regularity and symmetry of gait using a waist-mounted tri-axial accelerometer. Gait & Posture, 39(1), 553557. PubMed doi:10.1016/j.gaitpost.2013.09.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krause, D.A., Boyd, M.S., Hager, A.N., Smoyer, E.C., Thompson, A.T., & Hollman, J.H. (2015). Reliability and accuracy of a goniometer mobile device application for video measurement of the functional movement screen deep squat test. International Journal of Sports Physical Therapy, 10(1), 3744. PubMed doi:10.1186/1743-0003-10-118

    • Search Google Scholar
    • Export Citation
  • Kuan, T.-S., Tsou, J.-Y., & Su, F.-C. (1999). Hemiplegic gait of stroke patients: The effect of using a cane. Archives of Physical Medicine and Rehabilitation, 80(7), 777784. PubMed doi:10.1016/S0003-9993(99)90227-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauzière, S., Miéville, C., Betschart, M., Aissaoui, R., & Nadeau, S. (2015). Plantarflexor weakness is a determinant of kinetic asymmetry during gait in post-stroke individuals walking with high levels of effort. Clinical Biomechanics, 30(9), 946952. doi:10.1016/j.clinbiomech.2015.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, H., Makabe, T., Morita, T., Ikuhara, K., Kajigase, A., Okamoto, Y., … Hagino, H. (2015). Accelerometry-based gait analysis predicts falls among patients with a recent fracture who are ambulatory: A 1-year prospective study. International Journal of Rehabilitation Research, 38(2), 131136. doi:10.1097/MRR.0000000000000099

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meijer, R., Plotnik, M., Zwaaftink, E.G., van Lummel, R.C., Ainsworth, E., Martina, J.D., & Hausdorff, J.M. (2011). Markedly impaired bilateral coordination of gait in post-stroke patients: Is this deficit distinct from asymmetry? A cohort study. Journal of NeuroEngineering and Rehabilitation, 8(1), 23. doi:10.1186/1743-0003-8-23

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menz, H.B. (2003). Age-related differences in walking stability. Age and Ageing, 32(2), 137142. PubMed doi:10.1093/ageing/32.2.137

  • Mizuike, C., Ohgi, S., & Morita, S. (2009). Analysis of stroke patient walking dynamics using a tri-axial accelerometer. Gait & Posture, 30(1), 6064. PubMed doi:10.1016/j.gaitpost.2009.02.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moe-Nilssen, R., & Helbostad, J.L. (2004). Estimation of gait cycle characteristics by trunk accelerometry. Journal of Biomechanics, 37(1), 121126. PubMed doi:10.1016/S0021-9290(03)00233-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mudge, S., & Stott, N.S. (2009). Timed walking tests correlate with daily step activity in persons with stroke. Archives of Physical Medicine and Rehabilitation, 90(2), 296301. PubMed doi:10.1016/j.apmr.2008.07.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olney, S.J., Griffin, M.P., & McBride, I.D. (1994). Temporal, kinematic, and kinetic variables related to gait speed in subjects with hemiplegia: A regression approach. Physical Therapy, 74(9), 872885. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patterson, K.K., Gage, W.H., Brooks, D., Black, S.E., & McIlroy, W.E. (2010). Evaluation of gait symmetry after stroke: A comparison of current methods and recommendations for standardization. Gait & Posture, 31(2), 241246. PubMed doi:10.1016/j.gaitpost.2009.10.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, A., Duncan, P.W., Studenski, S., Lai, S.M., Richards, L., Perera, S., & Wu, S.S. (2007). Improvements in speed-based gait classifications are meaningful. Stroke, 38(7), 20962100. PubMed doi:10.1161/STROKEAHA.106.475921

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sekine, M., Tamura, T., Yoshida, M., Suda, Y., Kimura, Y., Miyoshi, H., … Fujimoto, T. (2013). A gait abnormality measure based on root mean square of trunk acceleration. Journal of NeuroEngineering and Rehabilitation, 10(1), 118. doi:10.1186/1743-0003-10-118

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senden, R., Grimm, B., Heyligers, I.C., Savelberg, H.H.C.M., & Meijer, K. (2009). Acceleration-based gait test for healthy subjects: Reliability and reference data. Gait & Posture, 30(2), 192196. PubMed doi:10.1016/j.gaitpost.2009.04.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, K., Mathers, C., & Bonita, R., (2007). Preventing stroke: Saving lives around the world. The Lancet Neurology, 6(2), 182187. PubMed doi:10.1016/S1474-4422(07)70031-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor-Piliae, R.E., Latt, L.D., Hepworth, J.T., & Coull, B.M. (2012). Predictors of gait velocity among community-dwelling stroke survivors. Gait & Posture, 35(3), 395399. PubMed doi:10.1016/j.gaitpost.2011.10.358

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terrier, P., & Reynard, F. (2015). Effect of age on the variability and stability of gait: A cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait & Posture, 41(1), 170174. PubMed doi:10.1016/j.gaitpost.2014.09.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tura, A., Raggi, M., Rocchi, L., Cutti, A.G., & Chiari, L. (2010). Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations. Journal of NeuroEngineering and Rehabilitation, 7(1), 4. doi:10.1186/1743-0003-7-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turns, L.J., Neptune, R.R., & Kautz, S.A., (2007). Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking. Archives of Physical Medicine and Rehabilitation, 88(9), 11271135. PubMed doi:10.1016/j.apmr.2007.05.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyrell, C.M., Roos, M.A., Rudolph, K.S., & Reisman, D.S. (2011). Influence of systematic increases in treadmill walking speed on gait kinematics after stroke. Physical Therapy, 91(3), 392403. PubMed doi:10.2522/ptj.20090425

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyson, S.F. (1999). Trunk kinematics in hemiplegic gait and the effect of walking aids. Clinical Rehabilitation, 13(4), 295300. PubMed doi:10.1191/026921599666307333

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zakaria, N.A., Kuwae, Y., Tamura, T., Minato, K., & Kanaya, S. (2015). Quantitative analysis of fall risk using TUG test. Computer Methods in Biomechanics and Biomedical Engineering, 18(4), 426437. PubMed doi:10.1080/10255842.2013.805211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zijlstra, W., & Hof, A.L. (2003). Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait & Posture, 18(2), 110. PubMed doi:10.1016/S0966-6362(02)00190-X

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 239 239 33
Full Text Views 3 3 0
PDF Downloads 3 3 0