Comparison of Child and Adolescent Physical Activity Levels From Open-Source Versus ActiGraph Counts

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 Behavioral Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
  • | 2 The Applied Sports, Technology, Exercise and Medicine Research Centre, Swansea University, Swansea, United Kingdom
  • | 3 Department of Kinesiology, Michigan State University, East Lansing, MI, USA
  • | 4 Integrative Physiology and Health Science Department, Alma College, Alma, MI, USA
  • | 5 University of Southern Denmark, Odense, Denmark
Restricted access

ActiGraph counts are commonly used for characterizing physical activity intensity and energy expenditure and are among the most well-studied accelerometer metrics. Researchers have recently replicated the counts processing method using a mechanical setup, now allowing users to generate counts from raw acceleration data. Purpose: The purpose of this study was to compare ActiGraph-generated counts to open-source counts and assess the impact on free-living physical activity levels derived from cut points, machine learning, and two-regression models. Methods: Children (n = 488, 13.0 ± 1.1 years of age) wore an ActiGraph wGT3X-BT on their right hip for 7 days during waking hours. ActiGraph counts and counts generated from raw acceleration data were compared at the epoch-level and as overall means. Seven methods were used to classify overall and epoch-level activity intensity. Outcomes were compared using weighted kappa, correlations, mean absolute deviation, and two one-sided equivalence testing. Results: All outcomes were statistically equivalent between ActiGraph and open-source counts; weighted kappa was ≥.971 and epoch-level correlations were ≥.992, indicating very high agreement. Bland–Altman plots indicated differences increased with activity intensity, but overall differences between ActiGraph and open-source counts were minimal (e.g., epoch-level mean absolute difference of 23.9 vector magnitude counts per minute). Regardless of classification model, average differences translated to 1.4–2.6 min/day for moderate- to vigorous-intensity physical activity. Conclusion: Open-source counts may be used to enhance comparability of future studies, streamline data analysis, and enable researchers to use existing developed models with alternative accelerometer brands. Future studies should verify the performance of open-source counts for other outcomes, like sleep.

Supplementary Materials

    • Supplementary Material (PDF 3 MB)
  • Arvidsson, D., Fridolfsson, J., Börjesson, M., Andersen, L.B., Ekblom, Ö., Dencker, M., & Brønd, J.C. (2019). Re‐examination of accelerometer data processing and calibration for the assessment of physical activity intensity. Scandinavian Journal of Medicine & Science in Sports, 29(10), 14421452. https://doi.org/10.1111/sms.13470

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bland, J.M., & Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327(8476), 307310. https://doi.org/10.1016/S0140-6736(86)90837-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brønd, J.C., Aadland, E., Andersen, L.B., Resaland, G.K., Andersen, S.A., & Arvidsson, D. (2019). The ActiGraph counts processing and the assessment of vigorous activity. Clinical Physiology and Functional Imaging, 39(4), 276283. https://doi.org/10.1111/cpf.12571

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brønd, J.C., Andersen, L.B., & Arvidsson, D. (2017). Generating ActiGraph counts from raw acceleration recorded by an alternative monitor. Medicine & Science in Sports & Exercise, 49(11), 23512360. https://doi.org/10.1249/MSS.0000000000001344

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brønd, J.C., & Arvidsson, D. (2015). Sampling frequency affects the processing of Actigraph raw acceleration data to activity counts. Journal of Applied Physiology, 120(3), 362369. https://doi.org/10.1152/japplphysiol.00628.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brondeel, R., Kestens, Y., Anaraki, J.R., Stanley, K., Thierry, B., & Fuller, D. (2021). Converting raw accelerometer data to activity counts using open-source code: Implementing a MATLAB code in Python and R, and comparing the results to ActiLife. Journal for the Measurement of Physical Behaviour, 4(3), 205211. https://doi.org/10.1123/jmpb.2019-0063

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brondeel, R., Wasfi, R., Perchoux, C., Chaix, B., Gerber, P., Gauvin, L., . . . Chevrier, M. (2019). Is older adults’ physical activity during transport compensated during other activities? Comparing 4 study cohorts using GPS and accelerometer data. Journal of Transport & Health, 12, 229236. https://doi.org/10.1016/j.jth.2019.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, A.R., Vigotsky, A.D., Tenan, M.S., Radel, R., Mellor, D.T., Kreutzer, A., . . . Boisgontier, M.P. (2020). Moving sport and exercise science forward: A call for the adoption of more transparent research practices. Sports Medicine, 50(3), 449459. https://doi.org/10.1007/s40279-019-01227-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, K.Y., & Bassett, D.R. (2005). The technology of accelerometry-based activity monitors: Current and future. Medicine & Science in Sports & Exercise, 37(11, Suppl. 1), S490. https://doi.org/10.1249/01.mss.0000185571.49104.82

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clevenger, K.A., Montoye, A.H.K., Van Camp, C.A., Strath, S.J., Pfeiffer, K.A. (2021). Accelerometer repository. https://sites.google.com/view/accelerometerrepository

    • Search Google Scholar
    • Export Citation
  • Clevenger, K.A., Brønd, J.C., Arvidsson, D., Montoye, A.H., Mackintosh, K.A., McNarry, M.A., & Pfeiffer, K.A. (2021). Impact of ActiGraph sampling rate and intermonitor comparability on measures of physical activity in adults. Journal for the Measurement of Physical Behaviour, 4(4), 287297. https://doi.org/10.1123/jmpb.2021-0016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clevenger, K.A., Moore, R.W., Suton, D., Montoye, A.H., Trost, S.G., & Pfeiffer, K.A. (2018). Accelerometer responsiveness to change between structured and unstructured physical activity in children and adolescents. Measurement in Physical Education and Exercise Science, 22(3), 224230. https://doi.org/10.1080/1091367X.2017.1419956

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clevenger, K.A., Pfeiffer, K.A., Mackintosh, K.A., McNarry, M.A., Brønd, J.C., Arvidsson, D., & Montoye, A.H. (2019). Effect of sampling rate on acceleration and counts of hip-and wrist-worn ActiGraph accelerometers in children. Physiological Measurement, 40(9), 095008. https://doi.org/10.1088/1361-6579/ab444b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clevenger, K.A., Pfeiffer, K.A., & Montoye, A.H. (2020). Cross-generational comparability of raw and count-based metrics from ActiGraph GT9X and wGT3X-BT accelerometers during free-living in youth. Measurement in Physical Education and Exercise Science, 24(3), 194204. https://doi.org/10.1080/1091367X.2020.1773827

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crouter, S.E., Horton, M., & Bassett, D.R., Jr. (2012). Use of a 2-regression model for estimating energy expenditure in children. Medicine & Science in Sports & Exercise, 44(6), 11771185. https://doi.org/10.1249/MSS.0b013e3182447825

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Almeida Mendes, M., da Silva, I.C., Ramires, V.V., Reichert, F.F., Martins, R.C., & Tomasi, E. (2018). Calibration of raw accelerometer data to measure physical activity: A systematic review. Gait & Posture, 61, 98110. https://doi.org/10.1016/j.gaitpost.2017.12.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Vries, S., Van Hirtum, H., Bakker, I., Hopman-Rock, M., Hirasing, R., & Van Mechelen, W. (2009). Validity and reproducibility of motion sensors in youth: A systematic update. Medicine & Science in Sport & Exercise, 41(4), 818827. https://doi.org/10.1249/MSS.0b013e31818e5819

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diniz-Sousa, F., Veras, L., Ribeiro, J.C., Boppre, G., Devezas, V., Santos-Sousa, H., . . . Oliveira, J. (2020). Accelerometry calibration in people with class II-III obesity: Energy expenditure prediction and physical activity intensity identification. Gait & Posture, 76, 104109. https://doi.org/10.1016/j.gaitpost.2019.11.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobbins, M., Husson, H., DeCorby, K., & LaRocca, R.L. (2013). School‐based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database of Systematic Reviews, 2013(2), Article CD007651. https://doi.org/10.1002/14651858.CD007651.pub2

    • Search Google Scholar
    • Export Citation
  • Farrahi, V., Niemelä, M., Kangas, M., Korpelainen, R., & Jämsä, T. (2019). Calibration and validation of accelerometer-based activity monitors: A systematic review of machine-learning approaches. Gait & Posture, 68, 285299. https://doi.org/10.1016/j.gaitpost.2018.12.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freedson, P.S., Melanson, E., & Sirard, J. (1998). Calibration of the computer science and applications, Inc. accelerometer. Medicine & Science in Sports & Exercise, 30(5), 777781. https://doi.org/10.1097/00005768-199805000-00021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamer, M., Lemon, J., Fellows, I., & Singh, P. (2012). irr: Various coefficients of interrater reliability and agreement. R package version 0.84. http://CRAN.R-project.org/package= irr

    • Search Google Scholar
    • Export Citation
  • Hänggi, J.M., Phillips, L.R.S., & Rowlands, A.V. (2013). Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. Journal of Science and Medicine in Sport, 16(1), 4044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibbing, P. (2018). Two Regression: Process data from wearable research devices using two-regression algorithms. R package version 0.1.2.

    • Search Google Scholar
    • Export Citation
  • Hibbing, P.R., Ellingson, L.D., Dixon, P.M., & Welk, G.J. (2018). Adapted Sojourn models to estimate activity intensity in youth: A suite of tools. Medicine & Science in Sports & Exercise, 50(4), 846854. https://doi.org/10.1249/MSS.0000000000001486

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Z., Shwetar, Y., Veerubhotla, A., & Ding, D. (2021, August). Converting raw accelerometer signals into ActiGraph counts for wheelchair-related activities. https://www.researchgate.net/profile/Yousif_Shwetar/publication/346024820_Converting_raw_accelerometer_signals_into_ActiGraph_counts_for_wheelchair-related_activities/links/5fb69bdb92851c933f3e218e/Converting-raw-accelerometer-signals-into-ActiGraph-counts-for-wheelchair-related-activities.pdf

    • Search Google Scholar
    • Export Citation
  • John, D., & Freedson, P. (2012). ActiGraph and Actical physical activity monitors: A peek under the hood. Medicine & Science in Sports & Exercise, 44(1, Suppl. 1), S86S89. https://doi.org/10.1249/MSS.0b013e3182399f5e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • John, D., Miller, R., Kozey-Keadle, S., Caldwell, G., & Freedson, P. (2012). Biomechanical examination of the ‘plateau phenomenon’in ActiGraph vertical activity counts. Physiological Measurement, 33(2), 219230. https://doi.org/10.1088/0967-3334/33/2/219

    • Crossref
    • Search Google Scholar
    • Export Citation
  • John, D., Tang, Q., Albinali, F., & Intille, S. (2019). An open-source monitor-independent movement summary for accelerometer data processing. Journal for the Measurement of Physical Behaviour, 2(4), 268281. https://doi.org/10.1123/jmpb.2018-0068

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kriemler, S., Meyer, U., Martin, E., van Sluijs, E.M., Andersen, L.B., & Martin, B.W. (2011). Effect of school-based interventions on physical activity and fitness in children and adolescents: A review of reviews and systematic update. British Journal of Sports Medicine, 45(11), 923930. https://doi.org/10.1136/bjsports-2011-090186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakens, D. (2017). TOSTER: Two one-sided tests (TOST) equivalence testing. R package version 0.2.5.

  • LaMunion, S.R., Bassett, D.R., Toth, L.P., & Crouter, S.E. (2017). The effect of body placement site on ActiGraph wGT3X-BT activity counts. Biomedical Physics & Engineering Express, 3(3), 035026. https://doi.org/10.1088/2057-1976/aa777c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, I.-M., Shiroma, E.J., Evenson, K.R., Kamada, M., LaCroix, A.Z., & Buring, J.E. (2018). Accelerometer-measured physical activity and sedentary behavior in relation to all-cause mortality: The women’s health study. Circulation, 137(2), 203205. https://doi.org/10.1161/CIRCULATIONAHA.117.031300

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McHugh, M.L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3), 276282. https://doi.org/10.11613/BM.2012.031

  • Migueles, J.H., Cadenas-Sanchez, C., Ekelund, U., Nyström, C.D., Mora-Gonzalez, J., Löf, M., . . . Ortega, F.B. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Medicine, 47(9), 18211845. https://doi.org/10.1007/s40279-017-0716-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H., Clevenger, K.A., Mackintosh, K.A., McNarry, M.A., & Pfeiffer, K.A. (2019). Cross-validation and comparison of energy expenditure prediction models using count-based and raw accelerometer data in youth. Journal for the Measurement of Physical Behaviour, 2(4), 237246. https://doi.org/10.1123/jmpb.2018-0011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H., Moore, R.W., Bowles, H.R., Korycinski, R., & Pfeiffer, K.A. (2016). Reporting accelerometer methods in physical activity intervention studies: A systematic review and recommendations for authors. British Journal of Sports Medicine, 52(23), 15071516. https://doi.org/10.1136/bjsports-2015-095947

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H., Nelson, M.B., Bock, J.M., Imboden, M.T., Kaminsky, L.A., Mackintosh, K.A., . . . Pfeiffer, K.A. (2018). Raw and count data comparability of hip-worn ActiGraph GT3X+ and Link accelerometers. Medicine & Science in Sports & Exercise, 50(5), 11031112. https://doi.org/10.1249/MSS.0000000000001534

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, H.J., Washburn, R., Servais, S., Ertl, A., Webster, J.G., & Nagle, F.J. (1983). Estimation of energy expenditure by a portable accelerometer. Medicine & Science in Sports & Exercise, 15(5), 403407. https://doi.org/10.1249/00005768-198315050-00010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peach, D., Van Hoomissen, J., & Callender, H.L. (2014). Exploring the ActiLife® filtration algorithm: Converting raw acceleration data to counts. Physiological Measurement, 35(12), Article 2359. https://doi.org/10.1088/0967-3334/35/12/2359

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, T.L., Brønd, J.C., Kristensen, P.L., Aadland, E., Grøntved, A., & Jepsen, R. (2020). Resemblance in accelerometer-assessed physical activity in families with children: The lolland-falster health study. International Journal of Behavioral Nutrition and Physical Activity, 17(1), 111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, M.G.B., Pedersen, J., Olesen, L.G., Brage, S., Klakk, H., Kristensen, P.L., . . . Grøntved, A. (2020). Short-term efficacy of reducing screen media use on physical activity, sleep, and physiological stress in families with children aged 4–14: Study protocol for the SCREENS randomized controlled trial. BMC Public Health, 20(1), 118. https://doi.org/10.1186/s12889-020-8458-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanzini, M., Petroski, E.L., Ohara, D., Dourado, A.C., & Reichert, F.F. (2014). Calibration of ActiGraph GT3X, Actical and RT3 accelerometers in adolescents. European Journal of Sport Science, 14(1), 9199. https://doi.org/10.1080/17461391.2012.732614

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Safrit, M.J., & Wood, T.M. (1995). Introduction to measurement in physical education and exercise science. Times Mirror/Mosby College.

  • Sasaki, J.E., da Silva, K.S., da Costa, B.G.G., & John, D. (2016). Measurement of physical activity using accelerometers. In K.J. Luiselli & J.A. Fischer (Eds.), Computer-assisted and web-based innovations in psychology, special education, and health (pp. 3360). Elsevier.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staudenmayer, J., Pober, D., Crouter, S., Bassett, D., & Freedson, P. (2009). An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. Journal of Applied Physiology, 107(4), 13001307. https://doi.org/10.1152/japplphysiol.00465.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toftager, M., Kristensen, P.L., Oliver, M., Duncan, S., Christiansen, L.B., Boyle, E., . . . Troelsen, J. (2013). Accelerometer data reduction in adolescents: Effects on sample retention and bias. International Journal of Behavioral Nutrition and Physical Activity, 10(1), 140112. https://doi.org/10.1186/1479-5868-10-140

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., Berrigan, D., Dodd, K.W., Masse, L.C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine & Science in Sports & Exercise, 40(1), 181188. https://doi.org/10.1249/mss.0b013e31815a51b3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., McClain, J.J., Brychta, R.J., & Chen, K.Y. (2014). Evolution of accelerometer methods for physical activity research. British Journal of Sports Medicine, 48(13), 10191023. https://doi.org/10.1136/bjsports-2014-093546

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tryon, W.W., & Williams, R. (1996). Fully proportional actigraphy: A new instrument. Behavior Research Methods, Instruments, & Computers, 28(3), 392403. https://doi.org/10.3758/BF03200519

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Domelen, D.R., & Pittard, W.S. (2014). Flexible R functions for processing accelerometer data, with emphasis on NHANES 2003–2006. R Journal, 6(2), 52. https://doi.org/10.32614/RJ-2014-024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Hees, V.T., Pias, M., Taherian, S., Ekelund, U., & Brage, S. (2010). A method to compare new and traditional accelerometry data in physical activity monitoring. Paper presented at the 2010 IEEE International Symposium on” A World of Wireless, Mobile and Multimedia Networks.” https://doi.org/10.1109/wowmom.2010.5534986

    • Search Google Scholar
    • Export Citation
  • Van Remoortel, H., Raste, Y., Louvaris, Z., Giavedoni, S., Burtin, C., Langer, D., . . . Hopkinson, N.S. (2012). Validity of six activity monitors in chronic obstructive pulmonary disease: A comparison with indirect calorimetry. PLoS One, 7(6), Article e39198. https://doi.org/10.1371/journal.pone.0039198

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijndaele, K., Westgate, K., Stephens, S.K., Blair, S.N., Bull, F.C., Chastin, S.F., . . . Freedson, P.S. (2015). Utilization and harmonization of adult accelerometry data: Review and expert consensus. Medicine & Science in Sports & Exercise, 47(10), 2129. https://doi.org/10.1249/MSS.0000000000000661

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 406 406 310
Full Text Views 358 358 2
PDF Downloads 114 114 4