Concurrent Validity of ActiGraph GT3X+ and Axivity AX3 Accelerometers for Estimating Physical Activity and Sedentary Behavior

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 AUT University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Introduction: Accelerometers are commonly used to assess time-use behaviors related to physical activity, sedentary behavior, and sleep; however, as new accelerometer technologies emerge, it is important to ensure consistency with previous devices. This study aimed to evaluate the concurrent validity of the commonly used accelerometer, ActiGraph GT3X+, and the relatively new Axivity AX3 (fastened to the lower back) for detecting physical activity intensity and body postures when using direct observation as the criterion measure. Methods: A total of 41 children (aged 6–16 years) and 33 adults (aged 28–59 years) wore both monitors concurrently while performing 10 prescribed activities under laboratory conditions. The GT3X+ data were categorized into different physical activity intensity and posture categories using intensity-based cut points and ActiGraph proprietary inclinometer algorithms, respectively. The AX3 data were first converted to ActiGraph counts before being categorized into different physical activity intensity categories, while activity recognition models were used to detect the target postures. Sensitivity, specificity, and the balanced accuracy for intensity and posture category classification were calculated for each accelerometer. Differences in balanced accuracy between the devices and between children and adults were also calculated. Results: Both accelerometers obtained 74–96% balanced accuracy, with the AX3 performing slightly better (∼4% higher, p < .01) for detecting postures and physical activity intensity. Error in both devices was greatest when contrasting sitting/standing, sedentary/light intensity, and moderate/light intensity. Conclusion: In comparison with the GT3X+ accelerometer, AX3 was able to detect various postures and activity intensities with slightly higher balanced accuracy in children and adults.

The authors are with the School of Sport and Recreation, AUT University, Auckland, New Zealand.

Hedayatrad (leila.hedayatrad@aut.ac.nz) is corresponding author.
  • Aadland, E., Andersen, L.B., Anderssen, S.A., & Resaland, G.K. (2018). A comparison of 10 accelerometer non-wear time criteria and logbooks in children. BMC Public Health, 18(1), 323. PubMed ID: 29510709 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ainsworth, B.E., Haskell, W.L., Herrmann, S.D., Meckes, N., Bassett, D.R., Jr., Tudor-Locke, C., … Leon, A.S. (2011). 2011 Compendium of Physical Activities: A second update of codes and MET values. Medicine & Science in Sports & Exercise, 43(8), 15751581. PubMed ID: 21681120 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, H.-S., Kim, Y., & Lee, J.-M. (2017). Accuracy of inclinometer functions of the activPAL and ActiGraph GT3X+: A focus on physical activity. Gait & Posture, 51, 174180. PubMed ID: 27780084 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkin, A.J., Gorely, T., Clemes, S.A., Yates, T., Edwardson, C., Brage, S., … Biddle, S.J. (2012). Methods of measurement in epidemiology: Sedentary behaviour. International Journal of Epidemiology, 41(5), 14601471. PubMed ID: 23045206 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berendsen, B.A., Hendriks, M.R., Meijer, K., Plasqui, G., Schaper, N.C., & Savelberg, H.H. (2014). Which activity monitor to use? Validity, reproducibility and user friendliness of three activity monitors. BMC Public Health, 14(1), 749. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brønd, J.C., Andersen, L.B., & Arvidsson, D. (2017). Generating actigraph counts from raw acceleration recorded by an alternative monitor. Medicine & Science in Sports & Exercise, 49(11), 23512360. PubMed ID: 28604558 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brønd, J.C., Arvidsson, D., & Møller, N.C. (2015). Comparison of hip and low back worn Axivity AX3 and GT3X+ activity monitors. Poster session presented at ICAMPAM 2015. Limerich, Ireland.

    • Search Google Scholar
    • Export Citation
  • Butte, N.F., Watson, K.B., Ridley, K., Zakeri, I.F., McMurray, R.G., Pfeiffer, K.A., … Fulton, J.E. (2018). A youth compendium of physical activities: Activity codes and metabolic intensities. Medicine & Science in Sports & Exercise, 50(2), 246256. PubMed ID: 28938248 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, L.J., & Mahar, M.T. (2011). Accuracy of intensity and inclinometer output of three activity monitors for identification of sedentary behavior and light-intensity activity. Journal of Obesity, 2012, 460271. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chastin, S., & Granat, M. (2010). Methods for objective measure, quantification and analysis of sedentary behaviour and inactivity. Gait & Posture, 31(1), 8286. PubMed ID: 19854651 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chastin, S.F.M., Palarea-Albaladejo, J., Dontje, M.L., & Skelton, D.A. (2015). Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: A novel compositional data analysis approach. PLoS One, 10(10), e0139984. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crouter, S.E., Hibbing, P.R., & LaMunion, S.R. (2018). Use of objective measures to estimate sedentary time in youth. Journal for the Measurement of Physical Behaviour, 1(3), 136142. PubMed ID: 32705076 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dumuid, D., Lewis, L.K., Olds, T.S., Maher, C., Bondarenko, C., & Norton, L. (2018). Relationships between older adults’ use of time and cardio-respiratory fitness, obesity and cardio-metabolic risk: A compositional isotemporal substitution analysis. Maturitas, 110, 104110. PubMed ID: 29563028 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dumuid, D., Maher, C., Lewis, L.K., Stanford, T.E., Fernández, J.A.M., Ratcliffe, J., … Fogelholm, M. (2018). Human development index, children’s health-related quality of life and movement behaviors: A compositional data analysis. Quality of Life Research, 27(6), 14731482. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, S., Stewart, T., Mackay, L., Neville, J., Narayanan, A., Walker, C., … Morton, S. (2018). Wear-time compliance with a dual-accelerometer system for capturing 24-h behavioural profiles in children and adults. International Journal of Environmental Research and Public Health, 15(7), 1296. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwardson, C.L., Rowlands, A.V., Bunnewell, S., Sanders, J., Esliger, D.W., Gorely, T., … Yates, T. (2016). Accuracy of posture allocation algorithms for thigh-and waist-worn accelerometers. Medicine & Science in Sports & Exercise, 48(6), 10851090. PubMed ID: 26741122 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Catellier, D.J., Gill, K., Ondrak, K.S., & McMurray, R.G. (2008). Calibration of two objective measures of physical activity for children. Journal of Sports Sciences, 26(14), 15571565. PubMed ID: 18949660 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairclough, S., Noonan, R., Rowlands, A., Van Hees, V., Knowles, Z., & Boddy, L. (2016). Wear compliance and activity in children wearing wrist and hip mounted accelerometers. Medicine & Science in Sports & Exercise, 48(2), 245253. PubMed ID: 26375253 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freedson, P.S., Melanson, E., & Sirard, J. (1998). Calibration of the Computer Science and Applications, Inc. accelerometer. Medicine & Science in Sports & Exercise, 30(5), 777781. PubMed ID: 9588623 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garber, C.E., Blissmer, B., Deschenes, M.R., Franklin, B.A., Lamonte, M.J., Lee, I.-M., … Swain, D.P. (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine & Science in Sports & Exercise, 43(7), 13341359. PubMed ID: 21694556 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hänggi, J.M., Phillips, L.R., & Rowlands, A.V. (2013). Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. Journal of Science and Medicine in Sport, 16(1), 4044. PubMed ID: 22749938 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herrmann, S.D., Barreira, T.V., Kang, M., & Ainsworth, B.E. (2013). How many hours are enough? Accelerometer wear time may provide bias in daily activity estimates. Journal of Physical Activity and Health, 10(5), 742749. PubMed ID: 23036822 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Júdice, P.B., Santos, D.A., Hamilton, M.T., Sardinha, L.B., & Silva, A.M. (2015). Validity of GT3X and Actiheart to estimate sedentary time and breaks using ActivPAL as the reference in free-living conditions. Gait & Posture, 41(4), 917922. PubMed ID: 25852024 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Júdice, P.B., Teixeira, L., Silva, A.M., & Sardinha, L.B. (2019). Accuracy of Actigraph inclinometer to classify free-living postures and motion in adults with overweight and obesity. Journal of Sports Sciences, 37, 17081716. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMahon, G.C., Brychta, R.J., & Chen, K.Y. (2010). Validation of the actigraph (GT3X) inclinometer function: 2045. Medicine & Science in Sports & Exercise, 42(5), 489. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narayanan, A., Desai, F., Stewart, T., Duncan, S., & Mackay, L. (2020). Application of raw accelerometer data and machine-learning techniques to characterize human movement behavior: A systematic scoping review. Journal of Physical Activity & Health, 17(3), 360383. PubMed ID: 32035416 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narayanan, A., Stewart, T., & Mackay, L. (2020). A dual-accelerometer system for detecting human movement in a free-living environment. Medicine & Science in Sports & Exercise, 52(1), 252258. PubMed ID: 31361712 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, G., Mygind, E., Bølling, M., Otte, C.R., Schneller, M.B., Schipperijn, J., … Bentsen, P. (2016). A quasi-experimental cross-disciplinary evaluation of the impacts of education outside the classroom on pupils’ physical activity, well-being and learning: The TEACHOUT study protocol. BMC Public Health, 16(1), 1117. PubMed ID: 27776502 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, N.E., Sirard, J.R., Kulbok, P.A., DeBoer, M.D., & Erickson, J.M. (2015). Validation of accelerometer thresholds and inclinometry for measurement of sedentary behavior in young adult university students. Research in Nursing & Health, 38(6), 492499. PubMed ID: 26444969 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quante, M., Kaplan, E.R., Rueschman, M., Cailler, M., Buxton, O.M., & Redline, S. (2015). Practical considerations in using accelerometers to assess physical activity, sedentary behavior, and sleep. Sleep Health: Journal of the National Sleep Foundation, 1(4), 275284. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rollo, S., Antsygina, O., & Tremblay, M.S. (2020). The whole day matters: Understanding 24-hour movement-guideline adherence and relationships with health indicators across the lifespan. Journal of Sport and Health Science. Advance online publication. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schneller, M.B., Bentsen, P., Nielsen, G., Brønd, J.C., Ried-Larsen, M., Mygind, E., & Schipperijn, J. (2017). Measuring children’s physical activity: Compliance using skin-taped accelerometers. Medicine & Science in Sports & Exercise, 49(6), 12611269. PubMed ID: 28181981 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skotte, J., Korshøj, M., Kristiansen, J., Hanisch, C., & Holtermann, A. (2014). Detection of physical activity types using triaxial accelerometers. Journal of Physical Activity and Health, 11(1), 7684. PubMed ID: 23249722 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamatakis, E., Koster, A., Hamer, M., Rangul, V., Lee, I.-M., Bauman, A.E., … Mork, P.J. (2019). Emerging collaborative research platforms for the next generation of physical activity, sleep and exercise medicine guidelines: The Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS). British Journal of Sports Medicine, 54(8), 435437. PubMed ID: 31076396 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, T., Narayanan, A., Hedayatrad, L., Neville, J., Mackay, L., & Duncan, S. (2018). A dual-accelerometer system for classifying physical activity in children and adults. Medicine & Science in Sports & Exercise, 50(12), 25952602. PubMed ID: 30048411 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trost, S.G., Loprinzi, P.D., Moore, R., & Pfeiffer, K.A. (2011). Comparison of accelerometer cut points for predicting activity intensity in youth. Medicine & Science in Sports & Exercise, 43(7), 13601368. PubMed ID: 21131873 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 145 145 145
Full Text Views 384 384 85
PDF Downloads 86 86 18