Are We Overestimating Physical Activity Prevalence in Children?

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $115.00

1 year subscription

USD $153.00

Student 2 year subscription

USD $218.00

2 year subscription

USD $285.00

Background: Physical activity guidelines state that children should achieve at least 60 minutes of moderate to vigorous physical activity (MVPA) on each day of the week. Accurate assessment of adherence to these guidelines should, ideally, include measurement over 7 days. When less than 7 days of data are available, researchers often report the average minutes of MVPA per day as a proxy for 7-day measurement. The aim of this study was to compare prevalence estimates generated by average MVPA per day versus MVPA assessed over 7 days. Methods: Data were collected as part of the Healthy Lifestyles Programme. One class from each school was randomized to wear a GENEActiv accelerometer for 8 days. The percentages of children achieving an average of ≥60 minutes of MVPA per day and those achieving ≥60 minutes of MVPA on each of 7 days were calculated. Results: A total of 807 children provided 7 days of data. When the average MVPA per day was calculated, 30.6% (n = 247) of children accumulated ≥60 minutes of MVPA per day. Only 3.2% (n = 26) accumulated ≥60 minutes of MVPA on every day of the week. Conclusion: Previous studies utilizing average MVPA per day are likely to have overestimated the percentage of children meeting recommendations.

Price and Hillsdon are with Sport and Health Science, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, United Kingdom. Wyatt, Lloyd, Abraham, and Dean are with the University of Exeter Medical School, University of Exeter, Exeter, Devon, United Kingdom. Creanor is with Peninsula Clinical Trials Unit, Plymouth University, Plymouth, Devon, United Kingdom.

Price (l.r.s.price@exeter.ac.uk) is corresponding author.
Journal of Physical Activity and Health
Article Sections
References
  • 1.

    Bauman APhongsavan PSchoeppe SOwen N. Physical activity measurement–a primer for health promotion. Promot Educ. 2006;13(2):92103. PubMed ID: 17017286 doi:10.1177/10253823060130020103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Department of Health. Start active, stay active, a report on physical activity for health from the four home countries’ Chief Medical Officers. 2011. http://www.bhfactive.org.uk/userfiles/Documents/startactivestayactive.pdf. Accessed September 122017.

    • Export Citation
  • 3.

    World Health Organization. Global Recommendations on Physical Activity for Health. Geneva, Switzerland: WHO Press; 2010:20

  • 4.

    Janssens ILeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40. doi:10.1186/1479-5868-7-40

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Rowlands AV. Accelerometer assessment of physical activity in children: an update. Pediatr Exerc Sci. 2007;19:252266. PubMed ID: 18019585 doi:10.1123/pes.19.3252

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Trost SPate RFreedson PSallis JTaylor W. Using Objective physical activity measures with youth: how many days of monitoring are needed? Med Sci Sports Exerc 2000;32:426431. PubMed ID: 10694127 doi:10.1097/00005768-200002000-00025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Griffiths LJCortina-Borja MSera Fet al. How active are our children? Findings from the Millennium Cohort Study. BMJ Open 2013;3:002893. PubMed ID: 23965931 doi:10.1136/bmjopen-2013-002893

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Cooper AGoodman APage Aet al. Objectively measured physical activity and sedentary time in youth: the International children’s accelerometry database (ICAD). Int J Behav Nutr Phys Act 2015;12:113. PubMed ID: 26377803 doi:10.1186/s12966-015-0274-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Mooses KMaestu JRiso EMet al. Different methods yielded two-fold difference in compliance with physical activity guidelines on school days. PLoS ONE. 2016;11(3):e0152323. doi:10.1371/journal.pone.0152323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Jago RAnderson CBBaranowski TWatson K. Adolescent patterns of physical activity, differences by gender, day and time of day. Am J Prev Med. 2005;28(5):447452. PubMed ID: 15894148 doi:10.1016/j.amepre.2005.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Brooke HLAtkin AJCorder KBrage Svan Sluijs E. Frequency and duration of physical activity bouts in school-aged children: a comparison within and between days. Prev Med Rep. 2016;4:585590. PubMed ID: 27843758 doi:10.1016/j.pmedr.2016.10.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Esliger DHall J. Accelerometry in children. In: Craig RMindell JHirani V eds. Health Survey for England: Physical Activity and Fitness. Leeds: The NHS Information Centre for Health and Social Care; 2008:159173.

    • Search Google Scholar
    • Export Citation
  • 13.

    Kang MRowe DABarreira TVRobinson TSMahar MT. Individual information-centred approach for handling physical activity missing data. Res Q Exer Sport. 2009;80(2):131137. doi:10.1080/02701367.2009.10599546

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Wyatt KLloyd JAbraham Cet al. The Healthy Lifestyles Programme (HeLP), a novel school-based intervention to prevent obesity in school children: study protocol for a randomised controlled trial. Trials. 2013;14:95. PubMed ID: 23556434 doi:10.1186/1745-6215-14-95

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lloyd JJCreanor SPrice Let al. Trial baseline characteristics of a cluster randomised controlled trial of a school-located obesity prevention programme; the Healthy Lifestyles Programme (HeLP) trial. BMC Publ Health. 2017;17(1):291. doi:10.1186/s12889-017-4196-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Van Hees VTFang ZZhao JHHeywood JMirkes ESabia S. Package “GGIR”: raw accelerometer data analysis. 2017; https://cran.r-project.org/web/packages/GGIR/index.html

    • Search Google Scholar
    • Export Citation
  • 17.

    da Silva ICVan Hees VTRamires Vet al. Physical activity levels in three Brazilian birth cohorts as assessed with raw triaxial wrist accelerometry. Int J Epidemiol. 2014;43(6):19591968. PubMed ID: 25361583 doi:10.1093/ije/dyu203

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Phillips LRParfitt GRowlands A. Calibration of the GENEA accelerometer for assessment of physical activity intensity in children. J Sci Med Sport. 2013;16:124128. PubMed ID: 22770768 doi:10.1016/j.jsams.2012.05.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cole TJFreeman JVPreece MA. British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Stat Med. 1998;17:407429.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Fairclough SJNoonan RRowlands AVvan Hees VTKnowles ZBoddy LM. (2016). Wear compliance and activity in children wearing wrist and hip mounted accelerometers. Med Sci Sports Exerc. 2016;48:245253. PubMed ID: 26375253 doi:10.1249/MSS.0000000000000771

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Tudor-Locke CBarreira TVSchuna JM Jret al. Improving wear time compliance with a 24-hour waist worn accelerometer protocol in the international study of childhood obesity lifestyle and environment (ISCOLE). Int J Behav Nutr Phys Act. 2015;12:11. doi:10.1186/s12966-015-0172-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Atkin AJSharp SJHarrison FBrage SVan Sluijs EMF. Seasonal variation in children’s physical activity and sedentary time. Med Sci Sports Exerc. 2016;48(3):449456. PubMed ID: 26429733 doi:10.1249/MSS.0000000000000786

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Riddoch CJMattocks CDeere Ket al. Objective measurement of levels and patterns of physical activity. Arch Dis Child. 2007;92(11):963969. PubMed ID: 17855437 doi:10.1136/adc.2006.112136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wilkie HStandage MSherar L. Results from England’s 2016 report card on physical activity for children and youth. J Phys Act Health. 2016;13(suppl 2):s143149. doi:10.1123/jpah.2016-0298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Troiano RBerrigan DDodd KMasse LCTilert TMcDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40:181188. PubMed ID: 18091006 doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lee IMShiroma EJ. Using accelerometers to measure physical activity in large-scale epidemiological studies: issues and challenges. Br J Sports Med. 2014;48:197201. PubMed ID: 24297837 doi:10.1136/bjsports-2013-093154

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Kim YBeets MWelk G. Everything you wanted to know about selecting the “right” Actigraph accelerometer cut-points for youth, but . . . : a systematic review. J Sci Med Sport. 2012;15(4):311321. PubMed ID: 22306372 doi:10.1016/j.jsams.2011.12.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Trost SLoprinzi PDMoore RPfiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):13601368. PubMed ID: 21131873 doi:10.1249/MSS.0b013e318206476e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hildebrand MVan Hees VTHansen BHEkelund U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med Sci Sports Exerc. 2014;46(9):18161824. PubMed ID: 24887173 doi:10.1249/MSS.0000000000000289

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bailey RCOlson JPepper SLPorszasz JBarstow TJCooper DM. The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc. 1995;27:10331041. PubMed ID: 7564970 doi:10.1249/00005768-199507000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Shephard RJ. The objective monitoring of physical activity. Prog Prev Med. 2017;2(4):e0007. doi:10.1097/pp9.0000000000000007

Article Metrics
All Time Past Year Past 30 Days
Abstract Views 87 88 26
Full Text Views 6 6 1
PDF Downloads 5 5 0
Altmetric Badge
PubMed
Google Scholar