Abdominal Circumference Versus Body Mass Index as Predictors of Lower Extremity Overuse Injury Risk

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: Abdominal circumference (AC) is superior to body mass index (BMI) as a measure of risk for various health outcomes. Our objective was to compare AC and BMI as predictors of lower extremity overuse injury (LEOI) risk. Methods: Retrospective review of electronic medical records of 79,868 US Air Force personnel over a 7-year period (2005–2011) for incidence of new LEOI. Subjects were stratified by BMI and AC. Injury risk for BMI/AC subgroups was calculated using Kaplan–Meier curves and Cox proportional-hazards regression. Receiver operating characteristic curves with area under the curve were used to compare each model’s predictive value. Results: Cox proportional-hazards regression showed significant risk association between elevated BMI, AC, and all injury types, with hazard ratios ranging 1.230–3.415 for obese versus normal BMI and 1.665–3.893 for high-risk versus low-risk AC (P < .05 for all measures). Receiver operating characteristic curves with area under the curve showed equivalent performance between BMI and AC for predicting all injury types. However, the combined model (AC and BMI) showed improved predictive ability over either model alone for joint injury, overall LEOI, and most strongly for osteoarthritis. Conclusions: Although AC and BMI alone performed similarly well, a combined approach using BMI and AC together improved risk estimation for LEOI.

Nye is the Sports Medicine Element Chief, 559th Medical Group, JBSA-Lackland, San Antonio, TX. Kafer is with 456th Medical Group, Luke AFB, Arizona, AZ. Olsen is with the Dept of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, MD. Carnahan is with the Defense Health Agency, Enterprise Intelligence Branch, San Antonio, TX. Crawford is with the Nellis Family Medicine Residency, Nellis AFB, Las Vegas, NV.

Nye (nathaniel.nye@gmail.com) is corresponding author.
  • 1.

    Galloway HR. Overuse injuries of the lower extremity. Radiol Clin North Am. 2013;51(3):511–528. PubMed doi:10.1016/j.rcl.2012.11.007

  • 2.

    Hauret KG, Jones BH, Bullock SH, Canham-Chervak M, Canada S. Musculoskeletal injuries description of an under-recognized injury problem among military personnel. Am J Prev Med. 2010;38(suppl 1):61–70. PubMed doi:10.1016/j.amepre.2009.10.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Cosca DD, Navazio F. Common problems in endurance athletes. Am Fam Physician. 2007;76(2):237–244. PubMed

  • 4.

    Hootman JM, Macera CA, Ainsworth BE, Addy CL, Martin M, Blair SN. Epidemiology of musculoskeletal injuries among sedentary and physically active adults. Med Sci Sports Exerc. 2002;34(5):838–844. doi:10.1097/00005768-200205000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Jones BH, Canham-Chervak M, Canada S, Mitchener TA, Moore S. Medical surveillance of injuries in the U.S. Military descriptive epidemiology and recommendations for improvement. Am J Prev Med. 2010;38(suppl 1):S42–S60. PubMed doi:10.1016/j.amepre.2009.10.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Army MSA. Estimates of absolute and relative morbidity burdens attributable to various illnesses and injuries, U.S. Armed Forces, 2011. Med Surveill Mon Rep. 2012;19(4):4–9.

    • Search Google Scholar
    • Export Citation
  • 7.

    Pierpoint LA, Williams CM, Fields SK, Comstock RD. Epidemiology of injuries in United States High School Track and Field: 2008–2009 through 2013–2014. Am J Sports Med. 2016;44(6):1463–1468. PubMed doi:10.1177/0363546516629950

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cassas KJ, Cassettari-Wayhs A. Childhood and adolescent sports-related overuse injuries. Am Fam Physician. 2006;73(6):1014–1022. PubMed

  • 9.

    Cameron KL, Owens BD. The burden and management of sports-related musculoskeletal injuries and conditions within the US military. Clin Sports Med. 2014;33(4):573–589. PubMed doi:10.1016/j.csm.2014.06.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Roos KG, Marshall SW. Definition and usage of the term “overuse injury” in the US high school and collegiate sport epidemiology literature: a systematic review. Sports Med. 2014;44(3):405–421. PubMed doi:10.1007/s40279-013-0124-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Wilder RP, Sethi S. Overuse injuries: tendinopathies, stress fractures, compartment syndrome, and shin splints. Clin Sports Med. 2004;23(1):55–81, vi. doi:10.1016/S0278-5919(03)00085-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Butterworth PA, Landorf KB, Smith SE, Menz HB. The association between body mass index and musculoskeletal foot disorders: a systematic review. Obes Rev. 2012;13(7):630–642. PubMed doi:10.1111/j.1467-789X.2012.00996.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Tukker A, Visscher TL, Picavet HS. Overweight and health problems of the lower extremities: osteoarthritis, pain and disability. Public Health Nutr. 2009;12(3):359–368. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Wang Y, Simpson JA, Wluka AE, et al. Relationship between body adiposity measures and risk of primary knee and hip replacement for osteoarthritis: a prospective cohort study. Arthritis Res Ther. 2009;11(2):R31. PubMed doi:10.1186/ar2636

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Irving DB, Cook JL, Young MA, Menz HB. Obesity and pronated foot type may increase the risk of chronic plantar heel pain: a matched case-control study. BMC Musculoskelet Disord. 2007;8:41. PubMed doi:10.1186/1471-2474-8-41

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Bohnsack M, Borner C, Ruhmann O, Wirth CJ. Patellofemoral pain syndrome. Orthopade. 2005;34(7):668–676. PubMed doi:10.1007/s00132-005-0818-5

  • 17.

    Abella V, Scotece M, Conde J, et al. Adipokines, metabolic syndrome and rheumatic diseases. J Immunol Res. 2014;2014:343746. doi:10.1155/2014/343746

  • 18.

    Wearing SC, Hennig EM, Byrne NM, Steele JR, Hills AP. Musculoskeletal disorders associated with obesity: a biomechanical perspective. Obes Rev. 2006;7(3):239–250. PubMed doi:10.1111/j.1467-789X.2006.00251.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–814. PubMed doi:10.1001/jama.2014.732

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Janssen I, Katzmarzyk PT, Ross R. Waist circumference and not body mass index explains obesity-related health risk. Am J Clin Nutr. 2004;79(3):379–384. PubMed

  • 21.

    Huxley R, Mendis S, Zheleznyakov E, Reddy S, Chan J. Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk—a review of the literature. Eur J Clin Nutr. 2010;64(1):16–22. doi:10.1038/ejcn.2009.68

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lee CM, Huxley RR, Wildman RP, Woodward M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. J Clin Epidemiol. 2008;61(7):646–653. PubMed doi:10.1016/j.jclinepi.2007.08.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Jacobs EJ, Newton CC, Wang Y, et al. Waist circumference and all-cause mortality in a large US cohort. Arch Intern Med. 2010;170(15):1293–1301. PubMed doi:10.1001/archinternmed.2010.201

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Air Force Instruction 36-2905, fitness program. 2013. http://static.e-publishing.af.mil/production/1/af_a1/publication/afi36-2905/afi36-2905.pdf. Accessed date November 1, 2017.

    • Export Citation
  • 25.

    Ardern CI, Janssen I, Ross R, Katzmarzyk PT. Development of health-related waist circumference thresholds within BMI categories. Obes Res. 2004;12(7):1094–1103. PubMed doi:10.1038/oby.2004.137

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Dobbelsteyn CJ, Joffres MR, MacLean DR, Flowerdew G. A comparative evaluation of waist circumference, waist-to-hip ratio and body mass index as indicators of cardiovascular risk factors. The Canadian Heart Health Surveys. Int J Obes Relat Metab Disord. 2001;25(5):652–661. doi:10.1038/sj.ijo.0801582

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Janssen I, Mark AE. Separate and combined influence of body mass index and waist circumference on arthritis and knee osteoarthritis. Int J Obes. 2006;30(8):1223–1228. doi:10.1038/sj.ijo.0803287

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Shiri R, Solovieva S, Husgafvel-Pursiainen K, et al. The association between obesity and the prevalence of low back pain in young adults: the Cardiovascular Risk in Young Finns Study. Am J Epidemiol. 2008;167(9):1110–1119. PubMed doi:10.1093/aje/kwn007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Taanila H, Suni J, Pihlajamaki H, et al. Aetiology and risk factors of musculoskeletal disorders in physically active conscripts: a follow-up study in the Finnish Defence Forces. BMC Musculoskelet Disord. 2010;11:146. PubMed doi:10.1186/1471-2474-11-146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Nye NS, Carnahan DH, Jackson JC, et al. Abdominal circumference is superior to BMI in estimating musculoskeletal injury risk. Med Sci Sports Exerc. 2014;46(10):1951–1959. doi:10.1249/MSS.0000000000000329

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Shaffer RA, Rauh MJ, Brodine SK, Trone DW, Macera CA. Predictors of stress fracture susceptibility in young female recruits. Am J Sports Med. 2006;34(1):108–115. PubMed doi:10.1177/0363546505278703

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Barlas FM, Higgins WB, Pflieger JC, et al. Department of defense survey of health related behaviors among active duty military personnel. 2011. http://www.dtic.mil/get-tr-doc/pdf?AD=ADA582287. Accessed date November 1, 2017.

    • Export Citation
  • 33.

    Nye NS, Covey CJ, Sheldon LM, et al. Improving diagnostic accuracy and efficiency of suspected bone stress injuries: algorithm and clinical prediction rule. Sports Health. 2016;8(3):278–283. PubMed doi:10.1177/1941738116635558

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Office of the Deputy Assistant Secretary of Defense. 2014 demographics: profile of the Military Community. U.S. Department of Defense, Office of the Deputy Assistant Secretary of Defense (Military Community and Family Policy). 2014. http://download.militaryonesource.mil/12038/MOS/Reports/2014-Demographics-Report.pdf. Accessed date November 1, 2017.

    • PubMed
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 117 117 14
Full Text Views 2 2 0
PDF Downloads 3 3 0