Revisiting Factors Associated With Screen Time Media Use: A Structural Study Among School-Aged Adolescents

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $119.00

1 year online subscription

USD  $159.00

Student 2 year online subscription

USD  $227.00

2 year online subscription

USD  $302.00

Background: Screen-based media overuse has been related to harmful consequences especially among children and adolescents. Given their complex interrelationships, predictors of screen time (ST) should be analyzed simultaneously rather than individually to avoid incomplete conclusions. Methods: Structural equation models were conducted to examine associations between media ST (television, video games, and computers) along with harmful consequences in adolescents’ well-being, such as underweight and overweight, depression, and school failure. Predictors included individual (gender, age, and physical activity), family (structure and socioeconomic background), and substance use variables. We used the Health Behaviour in School-aged Children survey organized in 2014, including eighth- and ninth-grade students living in France (N = 3720). Results: Students reported spending 3 hours per day in front of each media. Spending more than 2 hours behind each of those 3 media was associated with lower life satisfaction, less physical activity, active school bullying, and grade repetition. Socioeconomic status was the most important predictor of ST, whereas regular substance uses showed modest associations. Conclusion: The main implication of our findings is to sensitize parents and stakeholders about the limitation of ST, including their own use that adolescents are likely to mimic. Alternative measures such as off-line time should be encouraged.

Ngantcha, Janssen, Le-Nezet, Beck, and Spilka are with the French Monitoring Center for Drugs and Drug Addiction, Saint Denis, France. Godeau and Ehlinger are with UMR 1027 Inserm, Paul Sabatier University, Toulouse, France. Godeau is also with the Health Service, Regional Board of Education, Toulouse, France. Beck is also with the National Institute of Statistics and Economic Studies (INSEE), Paris, France.

Janssen (eric.janssen@ofdt.fr) is corresponding author.
  • 1.

    Strasburger VC, Donnerstein E. Children, adolescents, and the media: issues and solutions. Pediatrics. 1999;103(1):129139. PubMed doi:10.1542/peds.103.1.129

  • 2.

    American Academy of Pediatrics, Committee on Public Education. American Academy of Pediatrics: children, adolescents, and television. Pediatrics. 2001;107(2):423426. doi:10.1542/peds.107.2.423

    • Search Google Scholar
    • Export Citation
  • 3.

    AAP Council on Communications and Media. Media and young minds. Pediatrics. 2016;138(5):20162591. doi:10.1542/peds.2016-2591

  • 4.

    Strasburger VC. Children, adolescents, obesity, and the media. Pediatrics. 2011;128(1):201208. PubMed doi:10.1542/peds.2011-1066

  • 5.

    Hysing M, Pallesen S, Stormark KM, Jakobsen R, Lundervold A, Sivertsen B. Sleep and use of electronic devices in adolescence: results from a large population-based study. BMJ Open. 2015;5(1):e006748. PubMed doi:10.1136/bmjopen-2014-006748

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Sales de Lucena JM, Cheng LA, Mafaldo Cavalcante TL, Araújo da Silva V, Cazuza de Farias J Jr. Prevalence of excessive screen time and associated factors in adolescents. Rev Paul Pediatr. 2015;33(4):407414. doi:10.1016/j.rpped.2015.04.001

    • Search Google Scholar
    • Export Citation
  • 7.

    Hale L, Guan S. Screen time and sleep among school-aged children and adolescents: a systematic literature review. Sleep Med Rev. 2015;21:5058. PubMed doi:10.1016/j.smrv.2014.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Liao Y, Harada K, Ishii K, et al. Joint associations of physical activity and screen time with overweight among Japanese adults. Int J Behav Nutr Phys Act. 2011;8:131. doi:10.1186/1479-5868-8-131

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hands BP, Chivers PT, Parker HE, Beilin L, Kendall G, Larkin D. The associations between physical activity, screen time and weight from 6 to 14 years: the Raine Study. J Sci Med Sport. 2011;14(5):397403. PubMed doi:10.1016/j.jsams.2011.03.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Nightingale CM, Rudnicka A, Donin AS, et al. Screen time is associated with adiposity and insulin resistance in children. Arch Dis Child. 2017;102(7):612616. PubMed doi:10.1136/archdischild-2016-312016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Stamatakis E, Hamer M, Dunstan DW. Screen-based entertainment time, all-cause mortality, and cardiovascular events: population-based study with ongoing mortality and hospital events follow-up. J Am Coll Cardiol. 2011;57(3):292299. PubMed doi:10.1016/j.jacc.2010.05.065

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Department of Health and Social Security. Inequalities in Health: Report of a Research Working Group. London, UK: DHSS; 1980.

  • 13.

    Fairclough SJ, Moddy LM, Hackett AF, Stratton G. Associations between children’s socioeconomic status, weight status, and sex, with screen-based sedentary behaviours and sport participation. Int J Pedriatr Obes. 2009;4(4):299305. doi:10.3109/17477160902811215

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Tandon PS, Zhou C, Sallis JF, Cain KL, Frank LD, Saelens BE. Home environment relationships with children’s physical activity, sedentary time, and screen time by socioeconomic status. Int J Behav Nutr Phys Act. 2012;9:88. doi:10.1186/1479-5868-9-88

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Feng Q, Zhang QL, Du Y, Ye YL, He QQ. Associations of physical activity, screen time with depression, anxiety and sleep quality among Chinese college freshmen. PLoS ONE. 2014;9(6):e100914. PubMed doi:10.1371/journal.pone.0100914

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Legleye S, Janssen E, Beck F, Chau N, Khlat M. Social gradient in initiation and transition to daily use of tobacco and cannabis during adolescence: a retrospective cohort study. Addiction. 2011;106(8):15201531. PubMed doi:10.1111/j.1360-0443.2011.03447.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Legleye S, Janssen E, Le Nézet O, Spilka S, Chau N, Beck F. Opposite social gradient for alcohol use and misuse among French adolescents. Int J Drug Policy. 2013;24(4):359366. PubMed doi:10.1016/j.drugpo.2012.12.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Gutschoven K, Van den Bulck J. Television viewing and smoking volume in adolescent smokers: a cross-sectional study. Prevent Med. 2004;39(6):10931098. doi:10.1016/j.ypmed.2004.04.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Sharif I, Sargent JD. Association between television, movie, and video game exposure and school performance. Pediatrics. 2006;118(4):e10611070. PubMed doi:10.1542/peds.2005-2854

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Tremblay MS, LeBlanc AG, Kho ME, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8:98. doi:10.1186/1479-5868-8-98

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cao H, Quian Q, Weng T, et al. Screen time, physical activity and mental health among urban adolescents in China. Prevent Med. 2011;53(4–5):316320. doi:10.1016/j.ypmed.2011.09.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Janssen I, Boyce WF, Pickett W. Screen time and physical violence in 10 to 16-year-old Canadian youth. Int J Public Health. 2012;57(2):325331. doi:10.1007/s00038-010-0221-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Paik H, Comstock G. The effects of television violence on antisocial behavior: a meta-analysis. Communic Res. 1994;21(4):516546. doi:10.1177/009365094021004004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Kaptsis D, King DL, Delfabbro PH, Gradisar M. Trajectories of abstinence-induced Internet gaming withdrawal symptoms: a prospective pilot study. Addict Behav Rep. 2016;4:2430. doi:10.1016/j.abrep.2016.06.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Inchley J, Currie D, Young T, et al. Growing Up Unequal: Gender and Socioeconomic Differences in Young People’s Health and Well-Being. Health Behaviour in School-Aged Children (HBSC) Study: International Report From the 2013/2014 Survey. Copenhagen, Denmark: WHO Regional Office for Europe; 2016.

    • Search Google Scholar
    • Export Citation
  • 26.

    Adler NE, Newman K. Socioeconomic disparities in health: pathways and policies. Health Aff. 2002;21(2):6076. doi:10.1377/hlthaff.21.2.60

  • 27.

    Currie C, Molcho M, Boyce W, Holstein BE, Torsheim T, Richter M. Researching health inequalities in adolescents: the development of the Health Behaviour in School-Aged Children (HBSC) family affluence scale. Sco Sci Med. 2008;66(6):14291436. doi:10.1016/j.socscimed.2007.11.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7(4):284294. PubMed doi:10.1111/j.2047-6310.2012.00064.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Revah-Lévy A, Birmaher B, Gasquet I, Falissard B. The Adolescent Depression Rating Scale (ADRS): a validation study. BMC Psychiatry. 2007;7:2. doi:10.1186/1471-244X-7-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Glatzer W, Gulyas J. Self-anchoring striving scale. In:Michalos AC, ed. Encyclopedia of Quality of Life and Well-Being Research. Dordrecht, The Netherlands: Springer; 2014:509511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Olweus D. Bullying at School: What We Know and What We Can Do. Oxford, UK: Wiley-Blackwell; 1993.

  • 32.

    Rao JNK, Scott AJ. On chi-squared tests for multiway contingency tables with cell proportions estimated from survey data. Ann Stat. 1984;12(1):4660. doi:10.1214/aos/1176346391

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Kline RB. Principles and Practice of Structural Equation Modeling. 4th ed. New York, NY: Guilford Press; 2015.

  • 34.

    Rhemtulla M, Brosseau-Liard P, Savalei V. When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychol Methods. 2012;17(4):354373. doi:10.1037/a0029315

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Crowley SL, Fan X. Structural equation modeling: basic concepts and applications in personality assessment research. J Pers Assess. 1997;68(3):508531. PubMed doi:10.1207/s15327752jpa6803_4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ekström J. A Generalized Definition of the Polychoric Correlation Coefficient. Los Angeles, CA: UCLA, Department of Statistics; 2011.

  • 37.

    Muthén B, Asparouhov T. Latent Variable Analysis With Categorical Outcomes: Multiple-Group and Growth Modeling in Mplus. Mplus Web Note. Los Angeles, CA: UCLA; 2002.

    • Search Google Scholar
    • Export Citation
  • 38.

    Hooper D, Coughlan J, Mullen MR. Structural equation modeling: guidelines for determining model fit. Electron J Bus Res Method. 2008;6:5360.

    • Search Google Scholar
    • Export Citation
  • 39.

    Jöreskog KG, Sörbom D. LISREL 8: Structural Equation Modeling With the SIMPLIS Command Language. Hillsdale, NJ: Lawrence Erlbaum Associates; 1993.

    • Search Google Scholar
    • Export Citation
  • 40.

    Bentler PM, Bonett DG. Significance tests and goodness of fit in the analysis of covariance structures. Psychol Bull. 1980;88(3):588606. doi:10.1037/0033-2909.88.3.588

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Boomsma A. Reporting analyses of covariance structures. Struct Equ Modeling. 2000;7(3):461483. doi:10.1207/S15328007SEM0703_6

  • 42.

    Lucas K, Sherry JL. Sex differences in video game play: a communication-based explanation. Communic Res. 2004;31(5):499523. doi:10.1177/0093650204267930

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Nysveen H, Pedersen PE, Thorbjørnsen H. Explaining intention to use mobile chat services: moderating effects of gender. J Consum Market. 2005;22(5):247256. doi:10.1108/07363760510611671

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Iannotti RJ, Kogan M, Janssen I, Boyce W. Patterns of adolescent physical activity, screen-based media use, and positive and negative health indicators in the U.S. and Canada. J Adolescent Health. 2009;44(5):493499. doi:10.1016/j.jadohealth.2008.10.142

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Litt D, Stock ML. Adolescent alcohol-related risk cognitions: the roles of social norms and social networking sites. Psychol Addict Behav. 2011;25(4):708713. PubMed doi:10.1037/a0024226

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Gommans R, Stevens GW, Finne E, Cillessen AH, Boniel-Nissim M, ter Bogt TF. Frequent electronic media communication with friends is associated with higher adolescent substance use. Int J Public Health. 2015;60(2):167177. doi:10.1007/s00038-014-0624-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Jacobsen WC, Forste R. The wired generation: academic and social outcomes of electronic media use among university students. Cyberpsychol Behav Soc Netw. 2011;14(5):275280. PubMed doi:10.1089/cyber.2010.0135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Strasburger VC, Jordan AB, Donnerstein E. Health effects of media on children and adolescents. Pediatrics. 2010;125(4):756767. PubMed doi:10.1542/peds.2009-2563

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Carson V, Rosu A, Janssen I. A cross-sectional study of the environment, physical activity, and screen time among young children and their parents. BMC Public Health. 2014;14:61. PubMed doi:10.1186/1471-2458-14-61

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Léger D, Beck F, Richard JB, Godeau E. Total sleep time severely drops during adolescence. PLoS ONE. 2012;7(10):e45204. doi:10.1371/journal.pone.0045204

  • 51.

    van den Eijnden RJJM, Lemmens JS, Valkenburg PM. The Social Media Disorder Scale. Comput Human Behav. 2016;61(8):478487. doi:10.1016/j.chb.2016.03.038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Lau WWF. Effects of social media usage and social media multitasking on the academic performance of university students. Comput Human Behav. 2017;68(3):286291. doi:10.1016/j.chb.2016.11.043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Olds TS, Maher CA, Ridley K, Kittel DM. Descriptive epidemiology of screen and non-screen sedentary time in adolescents: a cross sectional study. Int J Behav Nutr Phys Act. 2010;7:92. doi:10.1186/1479-5868-7-92

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Uhls Y, Michikyan M, Morris J, et al. Five days at outdoor education camp without screens improves preteen skills with nonverbal emotion cues. Comput Human Behav. 2014;39:387392. doi:10.1016/j.chb.2014.05.036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Giedd JN. The digital revolution and adolescent brain evolution. J Adolesc Health. 2012;51(2):101105. PubMed doi:10.1016/j.jadohealth.2012.06.002

All Time Past Year Past 30 Days
Abstract Views 2101 1338 146
Full Text Views 53 12 4
PDF Downloads 42 8 3