Compliance With Physical Activity and Sedentary Behavior Guidelines and Associations With Abdominal Adiposity in a Sample of Infants and Toddlers From Soweto, South Africa

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $115.00

1 year subscription

USD $153.00

Student 2 year subscription

USD $218.00

2 year subscription

USD $285.00

Background: This study reported compliance with 24-hour physical activity and sedentary behavior guidelines, and associations with adiposity in the first 2 years of life. Methods: Participants (N = 119) were recruited from Soweto, South Africa. Visceral and subcutaneous abdominal adipose tissue was measured by ultrasound. Participation in 2 movement behaviors (physical activity and sedentary time) was reported by mothers. Differences in adiposity between those meeting each individual guideline, as well as the combination of both movement guidelines, compared with those not meeting the guidelines were assessed. Results: Only 5% of infants met the sedentary guidelines; however, 58% met the physical activity guidelines. Subcutaneous adipose tissue was significantly higher in those meeting the physical activity guideline (0.50 [0.01] vs 0.47 [0.01] cm, P = .03) compared with those not meeting the guideline. Meeting the screen time component of the sedentary guideline was associated with higher visceral adipose tissue (β = 0.96, P < .01), while meeting one guideline compared with meeting none was associated with higher subcutaneous adipose tissue (β = 0.05, P = .01). Conclusions: Most infants and toddlers from this low- to middle-income setting were not meeting sedentary behavior guidelines. Both behaviors were associated with abdominal adiposity, but not with body mass index z score; implying these movement behaviors may impact abdominal fat deposition rather than body size.

The authors are with the SAMRC/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.

Prioreschi (alessandra.prioreschi@wits.ac.za) is corresponding author.
Journal of Physical Activity and Health
Article Sections
References
  • 1.

    Tremblay MChaput JAdamo KAubert Set al. Canadian 24-hour movement guidelines for the early years (0–4 years): an integration of physical activity, sedentary behaviour, and sleep. BMC Public Health. 2017;17(suppl 5):874. PubMed ID: 29219102 doi:10.1186/s12889-017-4859-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Okely ADGhersi DHesketh KDet al. A collaborative approach to adopting/adapting guidelines—the Australian 24-hour movement guidelines for the early years (birth to 5 years): an integration of physical activity, sedentary behavior, and sleep. BMC Public Health. 2017;17(suppl 5):869. PubMed ID: 29219094 doi:10.1186/s12889-017-4867-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Laureus S. Moving, playing, sleeping: starting early with healthy habits. 2018. http://www.laureus.co.za/moving-playing-sleeping-starting-early-with-healthy-habits/. Accessed 04/12/18 2018.

    • Export Citation
  • 4.

    Santos RZhang ZPereira JRSousa-Sá ECliff DPOkely AD. Compliance with the Australian 24-hour movement guidelines for the early years: associations with weight status. BMC Public Health. 2017;17(S5):867. doi:10.1186/s12889-017-4857-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lee EHesketh KHunter Set al. Meeting new Canadian 24-hour movement guidelines for the early years and associations with adiposity among toddlers living in Edmonton, Canada. BMC Public Health. 2017;17(suppl 5):840. PubMed ID: 29219096 doi:10.1186/s12889-017-4855-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kuzik NPoitras VTremblay MLee EHunter SCarson V. Systematic review of the relationships between combinations of movement behaviours and health indicators in the early years (0–4 years). BMC Public Health. 2017;17(suppl 5):849. PubMed ID: 29219071 doi:10.1186/s12889-017-4851-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Sampasa-Kanyinga HStandage MTremblay MSet al. Associations between meeting combinations of 24-h movement guidelines and health-related quality of life in children from 12 countries. Public Health. 2017;153:1624. PubMed ID: 28818582 doi:10.1016/j.puhe.2017.07.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Carson VLee E-YHewitt Let al. Systematic review of the relationships between physical activity and health indicators in the early years (0–4 years). BMC Public Health. 2017;17(S5):854. doi:10.1186/s12889-017-4860-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Poitras VGray CJanssen Xet al. Systematic review of the relationships between sedentary behaviour and health indicators in the early years (0–4 years). BMC Public Health. 2017;17(suppl 5):868. PubMed ID: 29219092 doi:10.1186/s12889-017-4849-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hesketh KDowning KCampbell KCrawford DSalmon JHnatiuk J. Proportion of infants meeting the Australian 24-hour movement guidelines for the early years: data from the Melbourne InFANT program. BMC Public Health. 2017;17(suppl 5):856. PubMed ID: 29219073 doi:10.1186/s12889-017-4856-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hewitt LBenjamin-Neelon SCarson VStanleya RJanssend IOkelya A. Child care centre adherence to infant physical activity and screen time recommendations in Australia, Canada and the United States: an observational study. Infant Behav Dev. 2018;50:8897. PubMed ID: 29223777 doi:10.1016/j.infbeh.2017.11.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bhargava SKSachdev HSFall CHet al. Relation of serial changes in childhoods body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med. 2004;350:865875. PubMed ID: 14985484 doi:10.1056/NEJMoa035698

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Araujo de Franca GVRestrepo-Mendez MCLoret de Mola CVictora CG. Size at birth and abdominal adiposity in adults: a systematic review and meta-analysis. Obes Rev. 2014;15(2):7791. PubMed ID: 24112242 doi:10.1111/obr.12109

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hanson MAGluckman PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev. 2014;94(4):10271076. PubMed ID: 25287859 doi:10.1152/physrev.00029.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Prioreschi ABrage SHesketh KDHnatiuk JWestgate KMicklesfield LK. Describing objectively measured physical activity levels, patterns, and correlates in a cross sectional sample of infants and toddlers from South Africa. Int J Behav Nutr Phys Act. 2017;14(1):176. PubMed ID: 29273035 doi:10.1186/s12966-017-0633-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    de Onis M. WHO child growth standards based on length/height, weight and age. Acta Paediatr. 2006;95:7685.

  • 17.

    WHO. Anthro for Personal Computers Version 3.2.2 2011: Software for Assessing Growth and Development of the World’s Children. [computer program]. Geneva, Switzerland: WHO; 2010. http://www.who.int/childgrowth/software/en/

    • Search Google Scholar
    • Export Citation
  • 18.

    De Lucia Rolfe EModi NUthaya Set al. Ultrasound estimates of visceral and subcutaneous-abdominal adipose tissues in infancy. J Obes. 2013;2013:951954. PubMed ID: 23710350 doi:10.1155/2013/951954

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Draper CETomaz SABassett SHet al. Result from South Africa’s 2018 report card on physical activity for children and youth. JPAH. 2018;15:S406S408. doi:10.1123/jpah.2018-0517

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Aubert SBarnes JDAbdeta Cet al. Global matrix 3.0 physical activity report card grades for children and youth: results and analysis from 49 countries. J Phys Act Health. 2018;15(S2):S251S273. PubMed ID: 30475137 doi:10.1123/jpah.2018-0472

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Downing KLHinkley TSalmon JHnatiuk JAHesketh KD. Do the correlates of screen time and sedentary time differ in preschool children? BMC Public Health. 2017;17(1):285. PubMed ID: 28356094 doi:10.1186/s12889-017-4195-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Duch HFisher EMEnsari IHarrington A. Screen time use in children under 3 years old: a systematic review of correlates. Int J Behav Nutr Phys Act. 2013;10:102. PubMed ID: 23967799 doi:10.1186/1479-5868-10-102

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Toro-Ramos TPaley CPi-Sunyer FXGallagher D. Body composition during fetal development and infancy through the age of 5 years. Eur J Clin Nutr. 2015;69(12):12791289. PubMed ID: 26242725 doi:10.1038/ejcn.2015.117

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Ferreira Ada Silva Junior JFigueiroa JAlves J. Abdominal subcutaneous and visceral fat thickness in newborns: correlation with anthropometric and metabolic profile. J Perinatol. 2014(34):932935.

    • Search Google Scholar
    • Export Citation
  • 25.

    Kanazawa HKawai MNiwa Fet al. Subcutaneous fat accumulation in early infancy is more strongly associated with motor development and delay than muscle growth. Acta Paediatr. 2014;103(6):e262e267. PubMed ID: 24528278 doi:10.1111/apa.12597

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Whitaker RPepe MWright JSeidel KDietz W. Early adiposity rebound and the risk of adult obesity. Pediatrtics. 1998;101(3):E5. doi:10.1542/peds.101.3.e5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Hall KRichter LMokomane ZLake L eds. South African Child Gauge 2018. Cape Town: Children’s Institute, University of Cape Town; 2018.

    • Search Google Scholar
    • Export Citation
  • 28.

    Staiano AEKatzmarzyk PT. Ethnic and sex differences in body fat and visceral and subcutaneous adiposity in children and adolescents. Int J Obes. 2012;36(10):12611269. doi:10.1038/ijo.2012.95

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Santos SGaillard ROliveira Aet al. Associations of infant subcutaneous fat mass with total and abdominal fat mass at school-age: the generation R study. Paediatr Perinat Epidemiol. 2016;30(5):511520. PubMed ID: 27225335 doi:10.1111/ppe.12307

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Rolland-Cachera MFDeheeger MMaillot MBellisle F. Early adiposity rebound: causes and consequences for obesity in children and adults. Int J Obes. 2006;30(suppl 4):S11S17. doi:10.1038/sj.ijo.0803514

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Goedecke JHLevitt NSEvans Jet al. The role of adipose tissue in insulin resistance in women of African ancestry. J Obes. 2013;2013:952916. PubMed ID: 23401754 doi:10.1155/2013/952916

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hesketh KRO’Malley CPaes VMet al. Determinants of change in physical activity in children 0–6 years of age: a systematic review of quantitative literature. Sports Med. 2017;47(7):13491374. PubMed ID: 27988875 doi:10.1007/s40279-016-0656-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 152 152 91
Full Text Views 10 10 6
PDF Downloads 5 5 2
Altmetric Badge
PubMed
Google Scholar