A Comparison of the Physiology of Sedentary Behavior and Light Physical Activity in Adults With and Without a Physical Disability

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $115.00

1 year subscription

USD $153.00

Student 2 year subscription

USD $218.00

2 year subscription

USD $285.00

Background: It is questionable whether postures that are regarded as sedentary behavior in able-bodied persons evoke comparable physiological responses in adults with stroke or cerebral palsy (CP). This study aimed to compare metabolic demand and muscle activity in healthy controls, adults with stroke, and adults with CP during sedentary behavior and light physical activities. Methods: Seventy-one adults (45.6 [18.9] y, range 18–86) participated in this study, of which there were 18 controls, 31 with stroke, and 22 with CP. The metabolic equivalent of task (MET) and level of muscle activation were assessed for different sedentary positions (sitting supported and unsupported) and light physical activities (standing and walking). Results: During sitting supported and unsupported, people with mild to moderate stroke and CP show comparable MET and electromyographic values as controls. While sitting unsupported, people with severe stroke show higher METs and electromyographic values (P < .001), and people with severe CP only show higher METs compared with controls (P < .05) but all below 1.5 METs. Standing increased electromyographic values in people with severe stroke or CP (P < .001) and reached values above 1.5 METs. Conclusions: Physiologic responses during sedentary behavior are comparable for controls and adults with mild to moderate stroke and CP, whereas higher metabolic demands and muscle activity (stroke only) were observed in severely affected individuals.

Balemans, Koelewijn, Piek, Tubbing, Visser-Meily, and Verschuren are with the Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, Utrecht University and De Hoogstraat Rehabilitation, Utrecht, The Netherlands. Houdijk is with the Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Verschuren (o.verschuren@dehoogstraat.nl) is corresponding author.
Journal of Physical Activity and Health
Article Sections
References
  • 1.

    Davis JCVerhagen EBryan Set al. 2014 consensus statement from the first Economics of Physical Inactivity Consensus (EPIC) conference (Vancouver). Br J Sports Med. 2014;48:947951. PubMed ID: 24859181 doi:10.1136/bjsports-2014-093575

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Matthews CEChen KYFreedson PSet al. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008;167:875881. PubMed ID: 18303006 doi:10.1093/aje/kwm390

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Healy GNMatthews CEDunstan DWWinkler EAOwen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003–06. Eur Heart J. 2011;32:590597. PubMed ID: 21224291 doi:10.1093/eurheartj/ehq451

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Tremblay MSAubert SBarnes JDet al. Sedentary Behavior Research Network (SBRN)—terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14:75. PubMed ID: 28599680 doi:10.1186/s12966-017-0525-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hamilton MTHamilton DGZderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007;56:26552667. PubMed ID: 17827399 doi:10.2337/db07-0882

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Tikkanen OHaakana PPesola AJet al. Muscle activity and inactivity periods during normal daily life. PLoS ONE. 2013;8:e52228. PubMed ID: 23349681 doi:10.1371/journal.pone.0052228

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hamilton MTHamilton DGZderic TW. Exercise physiology versus inactivity physiology: an essential concept for understanding lipoprotein lipase regulation. Exerc Sport Sci Rev. 2004;32:161166. PubMed ID: 15604935 doi:10.1097/00003677-200410000-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Pesola AJLaukkanen ATikkanen OSipilä SKainulainen HFinni T. Muscle inactivity is adversely associated with biomarkers in physically active adults. Med Sci Sports Exerc. 2015;47:11881196. PubMed ID: 25251049 doi:10.1249/MSS.0000000000000527

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ekelund USteene-Johannessen JBrown WJet al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388:13021310. PubMed ID: 27475271 doi:10.1016/S0140-6736(16)30370-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Katzmarzyk PTLee IM. Sedentary behaviour and life expectancy in the USA: a cause-deleted life table analysis. BMJ Open. 2012;2(4):e000828. doi:10.1136/bmjopen-2012-000828

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Verschuren OPeterson MDBalemans ACHurvitz EA. Exercise and physical activity recommendations for people with cerebral palsy. Dev Med Child Neurol. 2016;58:798808. PubMed ID: 26853808 doi:10.1111/dmcn.13053

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Tieges ZMead GAllerhand Met al. Sedentary behavior in the first year after stroke: a longitudinal cohort study with objective measures. Arch Phys Med Rehabil. 2015;96:1523. PubMed ID: 25220942 doi:10.1016/j.apmr.2014.08.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    English CManns PJTucak CBernhardt J. Physical activity and sedentary behaviors in people with stroke living in the community: a systematic review. Phys Ther. 2014;94:185196. PubMed ID: 24029302 doi:10.2522/ptj.20130175

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Nooijen CSlaman JStam HRoebroeck MEBerg-Emons RJLearn2Move Research Group. Inactive and sedentary lifestyles amongst ambulatory adolescents and young adults with cerebral palsy. J Neuroeng Rehabil. 2014;11:49. PubMed ID: 24708559 doi:10.1186/1743-0003-11-49

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    English CHealy GNCoates ALewis LOlds TBernhardt J. Sitting and activity time in people with stroke. Phys Ther. 2016;96:193201. PubMed ID: 26112254 doi:10.2522/ptj.20140522

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Shkedy Rabani AHarries NNamoora IAl-Jarrah MDKarniel ABar-Haim S. Duration and patterns of habitual physical activity in adolescents and young adults with cerebral palsy. Dev Med Child Neurol. 2014;56:673680. PubMed ID: 24506509 doi:10.1111/dmcn.12394

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    English CHealy GNCoates ALewis LKOlds TBernhardt J. Sitting time and physical activity after stroke: physical ability is only part of the story. Top Stroke Rehabil. 2016;23:3642. PubMed ID: 26257146 doi:10.1179/1945511915Y.0000000009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Claridge EAMcPhee PGTimmons BWMartin Ginis KAMacdonald MJGorter JW. Quantification of physical activity and sedentary time in adults with cerebral palsy. Med Sci Sports Exerc. 2015;47:17191726. PubMed ID: 25423446 doi:10.1249/MSS.0000000000000589

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Moore SAHallsworth KPlotz TFord GARochester LTrenell MI. Physical activity, sedentary behaviour and metabolic control following stroke: a cross-sectional and longitudinal study. PLoS ONE. 2013;8:e55263. PubMed ID: 23383131 doi:10.1371/journal.pone.0055263

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Peterson MDRyan JMHurvitz EAMahmoudi E. Chronic conditions in adults with cerebral palsy. JAMA. 2015;314:23032305. PubMed ID: 26624831 doi:10.1001/jama.2015.11025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Peterson MDHaapala HJHurvitz EA. Predictors of cardiometabolic risk among adults with cerebral palsy. Arch Phys Med Rehabil. 2012;93:816821. PubMed ID: 22541309 doi:10.1016/j.apmr.2011.12.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    van der Slot WMRoebroeck MENieuwenhuijsen Cet al. Cardiovascular disease risk in adults with spastic bilateral cerebral palsy. J Rehabil Med. 2013;45:866872. PubMed ID: 23828200 doi:10.2340/16501977-1185

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Cremer NHurvitz EAPeterson MD. Multimorbidity in middle-aged adults with cerebral palsy. Am J Med. 2017;130:744.e9744.e15. doi:10.1016/j.amjmed.2016.11.044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Ryan JMHensey OMcLoughlin BLyons AGormley J. Reduced moderate-to-vigorous physical activity and increased sedentary behavior are associated with elevated blood pressure values in children with cerebral palsy. Phys Ther. 2014;94:11441153. PubMed ID: 24700137 doi:10.2522/ptj.20130499

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Bax MCFlodmark OTydeman C. Definition and classification of cerebral palsy. From syndrome toward disease. Dev Med Child Neurol Suppl. 2007;49:3941. PubMed ID: 17370481 doi:10.1111/j.1469-8749.2007.tb12627.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Verschuren OPeterson MDLeferink SDarrah J. Muscle activation and energy-requirements for varying postures in children and adolescents with cerebral palsy. J Pediatr. 2014;165:10111016. PubMed ID: 25151195 doi:10.1016/j.jpeds.2014.07.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Palisano RJRosenbaum PBartlett DLivingston MH. Content validity of the expanded and revised gross motor function classification system. Dev Med Child Neurol. 2008;50:744750. PubMed ID: 18834387 doi:10.1111/j.1469-8749.2008.03089.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Green JForster AYoung J. A test-retest reliability study of the Barthel Index, the Rivermead Mobility index, the Nottingham Extended Activities of Daily Living Scale and the Frenchay Activities Index in stroke patients. Disabil Rehabil. 2001;23:670676. PubMed ID: 11720117 doi:10.1080/09638280110045382

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Holden MKGill KMMagliozzi MRNathan JPiehl-Baker L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys Ther. 1984;64:3540. PubMed ID: 6691052 doi:10.1093/ptj/64.1.35

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Brehm MAHarlaar JGroepenhof H. Validation of the portable VmaxST system for oxygen-uptake measurement. Gait Posture. 2004;20:6773. PubMed ID: 15196523 doi:10.1016/S0966-6362(03)00097-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Smoliga JMMyers JBRedfern MSLephart SM. Reliability and precision of EMG in leg, torso, and arm muscles during running. J Electromyogr Kinesiol. 2010;20:e1e9. PubMed ID: 19850498 doi:10.1016/j.jelekin.2009.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hermens HJFreriks BDisselhorst-Klug CRau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10:361374. PubMed ID: 11018445 doi:10.1016/S1050-6411(00)00027-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Mello RGOliveira LFNadal J. Digital Butterworth filter for subtracting noise from low magnitude surface electromyogram. Comput Methods Programs Biomed. 2007;87:2835. PubMed ID: 17548125 doi:10.1016/j.cmpb.2007.04.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Stackhouse SKBinder-Macleod SALee SC. Voluntary muscle activation, contractile properties, and fatigability in children with and without cerebral palsy. Muscle Nerve. 2005;31:594601. PubMed ID: 15779003 doi:10.1002/mus.20302

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Byrne NMHills APHunter GRWeinsier RLSchutz Y. Metabolic equivalent: one size does not fit all. J Appl Physiol. 2005;99:11121119. doi:10.1152/japplphysiol.00023.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kozey SLyden KStaudenmayer JFreedson P. Errors in MET estimates of physical activities using 3.5 ml × kg(-1) × min(-1) as the baseline oxygen consumption. J Phys Act Health. 2010;7:508516. PubMed ID: 20683093 doi:10.1123/jpah.7.4.508

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Vanmechelen IMShortland APNoble JJ. Lower limb muscle volume estimation from maximum cross-sectional area and muscle length in cerebral palsy and typically developing individuals. Clin Biomech. 2017;51:4044. doi:10.1016/j.clinbiomech.2017.11.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Pate RRO’Neill JRLobelo F. The evolving definition of “sedentary”. Exerc Sport Sci Rev. 2008;36:173178. PubMed ID: 18815485 doi:10.1097/JES.0b013e3181877d1a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Gao YSilvennoinen MPesola AJKainulainen HCronin NJFinni T. Acute metabolic response, energy expenditure, and EMG activity in sitting and standing. Med Sci Sports Exerc. 2017;49:19271934. PubMed ID: 28463899 doi:10.1249/MSS.0000000000001305

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Verschuren Ode Haan FMead GFengler BVisser-Meily A. Characterizing energy expenditure during sedentary behavior after stroke. Arch Phys Med Rehabil. 2016;97:232237. PubMed ID: 26431671 doi:10.1016/j.apmr.2015.09.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    van der Ploeg HPChey TKorda RJBanks EBauman A. Sitting time and all-cause mortality risk in 222 497 Australian adults. Arch Intern Med. 2012;172:494500. PubMed ID: 22450936 doi:10.1001/archinternmed.2011.2174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Dunstan DWKingwell BALarsen Ret al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35:976983. PubMed ID: 22374636 doi:10.2337/dc11-1931

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Benatti FBRied-Larsen M. The effects of breaking up prolonged sitting time: a review of experimental studies. Med Sci Sports Exerc. 2015;47:20532061. PubMed ID: 26378942 doi:10.1249/MSS.0000000000000654

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Peddie MCBone JLRehrer NJSkeaff CMGray ARPerry TL. Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial. Am J Clin Nutr. 2013;98:358366. PubMed ID: 23803893 doi:10.3945/ajcn.112.051763

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 102 102 44
Full Text Views 8 8 2
PDF Downloads 5 5 1
Altmetric Badge
PubMed
Google Scholar