Stretching is Superior to Brisk Walking for Reducing Blood Pressure in People With High–Normal Blood Pressure or Stage I Hypertension

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: Aerobic exercise is recommended for reducing blood pressure; however, recent studies indicate that stretching may also be effective. The authors compared 8 weeks of stretching versus walking exercise in men and women with high–normal blood pressure or stage 1 hypertension (ie, 130/85–159/99 mm Hg). Methods: Forty men and women (61.6 y) were randomized to a stretching or brisk walking exercise program (30 min/d, 5 d/wk for 8 wk). Blood pressure was assessed during sitting and supine positions and for 24 hours using a portable monitor before and after the training programs. Results: The stretching program elicited greater reductions than the walking program (P < .05) for sitting systolic (146 [9] to 140 [12] vs 139 [9] to 142 [12] mm Hg), supine diastolic (85 [7] to 78 [8] vs 81 [7] to 82 [7] mm Hg), and nighttime diastolic (67 [8] to 65 [10] vs 68 [8] to 73 [12] mm Hg) blood pressures. The stretching program elicited greater reductions than the walking program (P < .05) for mean arterial pressure assessed in sitting (108 [7] to 103 [6] vs 105 [6] vs 105 [8] mm Hg), supine (102 [9] to 96 [9] vs 99 [6] to 99 [7] mm Hg), and at night (86 [9] to 83 [10] vs 88 [9] to 93 [12] mm Hg). Conclusions: An 8-week stretching program was superior to brisk walking for reducing blood pressure in individuals with high–normal blood pressure or stage 1 hypertension.

Ko, Deprez, Shaw, Tomczak, Foulds, and Chilibeck are with the College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada. Alcorn is with the College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada. Hadjistavropoulos is with the Department of Psychology, University of Regina, Regina, SK, Canada.

Chilibeck (phil.chilibeck@usask.ca) is corresponding author.
  • 1.

    Yusuf S, Hawkins S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937952. doi:10.1016/S0140-6736(04)17018-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):22242260. doi:10.1016/S0140-6736(12)61766-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Danaei G, Ding EL, Mozaffarian D, et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 2009;6(4):e1000058. doi:10.1371/journal.pmed.1000058

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Hypertension. 2018;71(6):e13e115. doi:10.1161/HYP.0000000000000065

    • Search Google Scholar
    • Export Citation
  • 5.

    Warburton DE, Charlesworth S, Ivey A, Nettlefold L, Bredin SS. A systematic review of the evidence for Canada’s physical activity guidelines for adults. Int J Behav Nutr Phys Act. 2010;7(1):39. doi:10.1186/1479-5868-7-39

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA; American College of Sports Medicine. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36(3):533553. doi:10.1249/01.MSS.0000115224.88514.3A

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hotta K, Kamiya K, Shimizu R, et al. Stretching exercises enhance vascular endothelial function and improve peripheral circulation in patients with acute myocardial infarction. Int Heart J. 2013;54(2):5963. doi:10.1536/ihj.54.59

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hotta K, Behnke BJ, Arjmandi B, et al. Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle. J Physiol. 2018;596(10):19031917. doi:10.1113/JP275459

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Shinno H, Kurose S, Yamanaka Y, et al. Evaluation of a static stretching intervention on vascular endothelial function and arterial stiffness. Eur J Sport Sci. 2017;17(5):586592. doi:10.1080/17461391.2017.1284267

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Poole DC, Musch TI, Kindig CA. In vivo microvascular structural and functional consequences of muscle length changes. Am J Physiol. 1997;272(5 Pt 2):H2107H2114. doi:10.1152/ajpheart.1997.272.5.H2107

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Jackson ZS, Gotlieb AI, Langille BL. Wall tissue remodeling regulates longitudinal tension in arteries. Circ Res. 2002;90(8):918925. doi:10.1161/01.RES.0000016481.87703.CC

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kuebler WM, Uhlig U, Goldmann T, et al. Stretch activates nitric oxide production in pulmonary vascular endothelial cells in situ. Am J Respir Crit Care Med. 2003;168(11):13911398. PubMed ID: 12947026 doi:10.1164/rccm.200304-562OC

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kato M, Nihei Green F, Hotta K, et al. The efficacy of stretching exercises on arterial stiffness in middle-aged and older adults: a meta-analysis of randomized and non-randomized controlled trials. Int J Environ Res Public Health. 2020;17(16):5643. PubMed ID: 32764418 doi:10.3390/ijerph17165643

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Igarashi Y, Akazawa N, Maeda S. The required step count for a reduction in blood pressure: a systematic review and meta-analysis. J Hum Hypertens. 2018;32(12):814824. PubMed ID: 30127487 doi:10.1038/s41371-018-0100-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Oja P, Kelly P, Murtagh EM, Murphy MH, Foster C, Titze S. Effects of frequency, intensity, duration and volume of walking interventions on CVD risk factors: a systematic review and meta-regression analysis of randomised controlled trials among inactive healthy adults. Br J Sports Med. 2018;52(12):769775. PubMed ID: 29858464 doi:10.1136/bjsports-2017-098558

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Murtagh EM, Nichols L, Mohammed MA, Holder R, Nevill AM, Murphy MH. The effect of walking on risk factors for cardiovascular disease: an updated systematic review and meta-analysis of randomised control trials. Prev Med. 2015;72:3443. PubMed ID: 25579505 doi:10.1016/j.ypmed.2014.12.041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Yeo S. Adherence to walking or stretching, and risk of preeclampsia in sedentary pregnant women. Res Nurs Health. 2009;32(4):379390. PubMed ID: 19415672 doi:10.1002/nur.20328

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Nerenberg KA, Zarnke KB, Leung AA, et al. Hypertension Canada’s 2018 guidelines for diagnosis, risk assessment, prevention, and treatment of hypertension in adults and children. Can J Cardiol. 2018;34(5):506525. PubMed ID: 29731013 doi:10.1016/j.cjca.2018.02.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Goodwin J, Bilous M, Winship S, Finn P, Jones SC. Validation of the Oscar 2 oscillometric 24-h ambulatory blood pressure monitor according to the British Hypertension Society protocol. Blood Press Monit. 2007;12(2):113117. PubMed ID: 17353655 doi:10.1097/MBP.0b013e3280acab1b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Krzesiński P, Stańczyk A, Gielerak G, Piotrowicz K, Banak M, Wójcik A. The diagnostic value of supine blood pressure in hypertension. Arch Med Sci. 2016;2(2):310318. PubMed ID: 27186174 doi:10.5114/aoms.2016.59256

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Washburn RA, Smith KW, Jette AM, Janney CA. The physical activity scale for the elderly (PASE): development and evaluation. J Clin Epidemiol. 1993;46(2):153162. PubMed ID: 8437031 doi:10.1016/0895-4356(93)90053-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Washburn RA, McAuley E, Katula J, Mihalko SL, Boileau RA. The physical activity scale for the elderly (PASE): evidence for validity. J Clin Epidemiol. 1999;52(7):643651. PubMed ID: 10391658 doi:10.1016/S0895-4356(99)00049-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Schuit AJ, Schouten EG, Westerterp KR, Saris WH. Validity of the physical activity scale for the elderly (PASE): according to energy expenditure assessed by the doubly labeled water method. J Clin Epidemiol. 1997;50(5):541546. PubMed ID: 9180646 doi:10.1016/S0895-4356(97)00010-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Nishiwaki M, Kurobe K, Kiuchi A, Nakamura T, Matsumoto N. Sex differences in flexibility-arterial stiffness relationship and its application for diagnosis of arterial stiffening: a cross-sectional observational study. PLoS One. 2014;9(11):e113646 PubMed ID: 25427157 doi:10.1371/journal.pone.0113646

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Yamamoto K, Kawano H, Gando Y, et al. Poor trunk flexibility is associated with arterial stiffening. Am J Physiol Heart Circ Physiol. 2009;297(4):H1314H1318. PubMed ID: 19666849 doi:10.1152/ajpheart.00061.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cortez-Cooper MY, Anton MM, Devan AE, Neidre DB, Cook JN, Tanaka H. The effects of strength training on central arterial compliance in middle-aged and older adults. Eur J Cardiovasc Prev Rehabil. 2008;15(2):149155. PubMed ID: 18391640 doi:10.1097/HJR.0b013e3282f02fe2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Nishiwaki M, Yonemura H, Kurobe K, Matsumoto N. Four weeks of regular static stretching reduces arterial stiffness in middle-aged men. Springerplus. 2015;4(1):555. PubMed ID: 26435901 doi:10.1186/s40064-015-1337-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Wong A, Figueroa A. Eight weeks of stretching training reduces aortic wave reflection magnitude and blood pressure in obese postmenopausal women. J Hum Hypertens. 2014;28(4):246250. PubMed ID: 24132138 doi:10.1038/jhh.2013.98

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cramer H, Haller H, Lauche R, Steckhan N, Michalsen A, Dobos G. A systematic review and meta-analysis of yoga for hypertension. Am J Hypertens. 2014;27(9):11461151. PubMed ID: 24795403 doi:10.1093/ajh/hpu078

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Martins-Meneses DT, Antunes HK, de Oliveira NR, Medeiros A. Mat Pilates training reduced clinical and ambulatory blood pressure in hypertensive women using antihypertensive medications. Int J Cardiol. 2015;179:262268. PubMed ID: 25464462 doi:10.1016/j.ijcard.2014.11.064

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Brandani JZ, Mizuno J, Ciolac EG, Monteiro HL. The hypotensive effect of Yoga’s breathing exercises: a systematic review. Complement Ther Clin Pract. 2017;28:3846. PubMed ID: 28779935 doi:10.1016/j.ctcp.2017.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Park SH, Han KS. Blood pressure response to meditation and yoga: a systematic review and meta-analysis. J Altern Complement Med. 2017;23(9):685695. PubMed ID: 28384004 doi:10.1089/acm.2016.0234

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Taylor AC, McCartney N, Kamath MV, Wiley RL. Isometric training lowers resting blood pressure and modulates autonomic control. Med Sci Sports Exerc. 2003;35(2):251256. PubMed ID: 12569213 doi:10.1249/01.MSS.0000048725.15026.B5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Bisconti AV, E, Longo S, et al. Evidence for improved systemic and local vascular function after long-term passive static stretching training of the musculoskeletal system. J Physiol. 2020;598(17):36453666. PubMed ID: 32613634 doi:10.1113/JP279866

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 134 134 134
Full Text Views 15887 15887 2313
PDF Downloads 1940 1940 318