Step Count Associations Between Adults at Risk of Developing Diabetes and Their Children: The Feel4Diabetes Study

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: Shared risk factors of type 2 diabetes mellitus (T2DM) between parents at risk and their children, such as low physical activity levels, should be addressed to prevent the development of the disease. The aim of this study was to determine the association of objectively measured step counts per day between parents at risk of developing T2DM and their 6- to 10-year-old children. Methods: The baseline data from the Feel4Diabetes study were analyzed. Dyads of children and one parent (n = 250, 54.4% girls and 77.6% mothers) from Belgium were included. Step counts per day during 5 consecutive days from parents and their children were objectively measured with ActiGraph accelerometers. Results: Adjusted linear regression models indicated that parents’ and children’s step counts were significantly associated during all days (β = 0.245), weekdays (β = 0.205), and weekend days (β = 0.316) (P ≤ .002 in all cases). Specifically, mother–daughter associations during all days and weekend days and father–son step counts during weekdays and when considering all days were significant. Conclusion: There is a positive association between step counts from adults at risk of developing T2DM and their children, especially in the mother–daughter and father–son dyads.

Flores-Barrantes, Iglesia, and Moreno are with the Growth, Exercise, Nutrition and Development (GENUD) Research Group, University of Zaragoza, Zaragoza, Spain; and the Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain. Cardon is with the Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium. Iglesia and Moreno are also with the Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain. Iglesia is also with the Red de Salud Materno-infantil y del Desarrollo (SAMID), Barakaldo, Spain. Moreno is also with the Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Madrid, Spain. Androutsos and Manios are with the Department of Nutrition-Dietetics, School of Health Science & Education, Harokopio University, Athens, Greece. Kivelä and Lindström are with the National Institute for Health and Welfare, Helsinki, Finland. De Craemer is with the Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium; and the Research Foundation Flanders, Brussels, Belgium.

Flores-Barrantes (pfloba@unizar.es) is corresponding author.

Supplementary Materials

    • Supplementary Material 1 (PDF 264 KB)
    • Supplementary Material 2 (PDF 340 KB)
    • Supplementary Material 3 (PDF 360 KB)
  • 1.

    Zimmet PZ, Alberti KG. Epidemiology of diabetes-status of a pandemic and issues around metabolic surgery. Diabetes Care. 2016;39(6):878883. PubMed ID: 27222545 doi:10.2337/dc16-0273

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Drong AW, Lindgren CM, McCarthy MI. The genetic and epigenetic basis of type 2 diabetes and obesity. Clin Pharmacol Ther. 2012;92(6):707715. PubMed ID: 23047653 doi:10.1038/clpt.2012.149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hu Z, Gao F, Qin L, Yang Y, Xu H. A case-control study on risk factors and their interactions with prediabetes among the elderly in rural communities of Yiyang City, Hunan Province. J Diabetes Res. 2019;2019:1386048. PubMed ID: 30911549 doi:10.1155/2019/1386048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kolb H, Martin S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. 2017;15(1):131. PubMed ID: 28720102 doi:10.1186/s12916-017-0901-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lascar N, Brown J, Pattison H, Barnett A, Bailey C, Bellary S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018;6(1):6980. PubMed ID: 28847479 doi:10.1016/S2213-8587(17)30186-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    American Diabetes Association. Standards of medical care in diabetes--2015: summary of revisions. Diabetes Care. 2015;38(suppl):S4. PubMed ID: 25537706 doi:10.2337/dc15-S003

    • Search Google Scholar
    • Export Citation
  • 7.

    Knowler WC, Barrett-Connor E, Fowler SE, et al. . Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393403. PubMed ID: 11832527 doi:10.1056/NEJMoa012512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    American Diabetes Association. 3. Prevention or delay of type 2 diabetes: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(suppl 1):S29S33. PubMed ID: 30559229 doi:10.2337/dc19-S003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Fukuoka Y, Gay CL, Joiner KL, Vittinghoff E. A novel diabetes prevention intervention using a mobile app: a randomized controlled trial with overweight adults at risk. Am J Prev Med. 2015;49(2):223237. PubMed ID: 26033349 doi:10.1016/j.amepre.2015.01.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ball GDC, Ambler KA, Keaschuk RA, et al. . Parents as Agents of Change (PAC) in pediatric weight management: the protocol for the PAC randomized clinical trial. BMC Pediatr. 2012;12(1):114. PubMed ID: 22866998 doi:10.1186/1471-2431-12-114

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Davison KK, Birch LL. Obesigenic families: parents’ physical activity and dietary intake patterns predict girls’ risk of overweight. Int J Obes Relat Metab Disord. 2002;26(9):11861193. PubMed ID: 12187395 doi:10.1038/sj.ijo.0802071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Larsen H, Dinkel D, Warehime S, Berg K. The relationship between parental and child physical activity in a rural community. Fam Community Health. 2017;40(4):331337. PubMed ID: 28820787 doi:10.1097/FCH.0000000000000161

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Garriguet D, Colley R, Bushnik T. Parent-child association in physical activity and sedentary behaviour. Health Rep. 2017;28(6):311. PubMed ID: 28636068

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Brouwer SI, Kupers LK, Kors L, et al. . Parental physical activity is associated with objectively measured physical activity in young children in a sex-specific manner: the GECKO Drenthe cohort. BMC Public Health. 2018;18(1):1033. PubMed ID: 30126399 doi:10.1186/s12889-018-5883-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bringolf-Isler B, Schindler C, Kayser B, Suggs LS, Probst-Hensch N. Objectively measured physical activity in population-representative parent-child pairs: parental modelling matters and is context-specific. BMC Public Health. 2018;18(1):1024. PubMed ID: 30119661 doi:10.1186/s12889-018-5949-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Djafarian K, Speakman JR, Stewart J, Jackson DM. Familial resemblance of body composition, physical activity, and resting metabolic rate in pre-school children. Rep Biochem Mol Biol. 2013;2(1):115. PubMed ID: 26989715

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Manios Y, Androutsos O, Lambrinou CP, et al. . A school- and community-based intervention to promote healthy lifestyle and prevent type 2 diabetes in vulnerable families across Europe: design and implementation of the Feel4Diabetes-study. Public Health Nutr. 2018;21(17):32813290. PubMed ID: 30207513 doi:10.1017/S1368980018002136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Lindstrom J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care. 2003;26(3):725731. PubMed ID: 12610029 doi:10.2337/diacare.26.3.725

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 2011;14(5):411416. PubMed ID: 21616714 doi:10.1016/j.jsams.2011.04.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    De Craemer M, De Decker E, Santos-Lozano A, et al. . Validity of the Omron pedometer and the actigraph step count function in preschoolers. J Sci Med Sport. 2015;18(3):289293. PubMed ID: 24994695 doi:10.1016/j.jsams.2014.06.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Rowe DA, Maher MT, Raedeke TD, Lore J. Measuring physical activity in children with pedometers: reliability, reactivity, and replacing missing data. Pediatr Exerc Sci. 2006;16(4):343354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Tudor-Locke C, Craig CL, Beets MW, et al. . How many steps/day are enough? For children and adolescents. Int J Behav Nutr Phys Act. 2011;8(1):78. PubMed ID: 21798014 doi:10.1186/1479-5868-8-78

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Tudor-Locke C, Bassett DR Jr. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 2004;34(1):18. PubMed ID: 14715035 doi:10.2165/00007256-200434010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    WHO Child Growth Standards: Methods and Development: Weight-Forheight and Bodymass Index-For-Age [computer program] (p. 312). World Health Organization; 2006.

    • Search Google Scholar
    • Export Citation
  • 25.

    Owen C, Nightingale C, Rudnicka A, et al. . Travel to school and physical activity levels in 9-10 year-old UK children of different ethnic origin; Child Heart and Health Study in England (CHASE). PLoS One. 2012;7(2):e30932. PubMed ID: 22319596 doi:10.1371/journal.pone.0030932

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Michalopoulou M, Gourgoulis V, Kourtessis T, Kambas A, Dimitrou M, Gretziou H. Step counts and body mass index among 9–14 years old Greek schoolchildren. J Sports Sci Med. 2011;10(1):215221. PubMed ID: 24149316

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Trost SG, Pate RR, Sallis JF, et al. . Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34(2):350355. PubMed ID: 11828247 doi:10.1097/00005768-200202000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Tanaka S. Status of physical activity in Japanese adults and children. Ann Hum Biol. 2019;46(4):305310. PubMed ID: 31234661 doi:10.1080/03014460.2019.1635644

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Sigmundova D, Sigmund E, Vokacova J, Kopkova J. Parent-child associations in pedometer-determined physical activity and sedentary behaviour on weekdays and weekends in random samples of families in the Czech Republic. Int J Environ Res Public Health. 2014;11(7):71637181. PubMed ID: 25026084 doi:10.3390/ijerph110707163

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Tu AW, Watts AW, Masse LC. Parent-adolescent patterns of physical activity, sedentary behaviors and sleep among a sample of overweight and obese adolescents. J Phys Act Health. 2015;12(11):14691476. PubMed ID: 25621567 doi:10.1123/jpah.2014-0270

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tudor-Locke C, Johnson WD, Katzmarzyk PT. Accelerometer-determined steps per day in US children and youth. Med Sci Sports Exerc. 2010;42(12):22442250. PubMed ID: 20421837 doi:10.1249/MSS.0b013e3181e32d7f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Morgan PJ, Young MD, Barnes AT, Eather N, Pollock ER, Lubans DR. Engaging fathers to increase physical activity in girls: the “dads and daughters exercising and empowered” (DADEE) randomized controlled trial. Ann Behav Med. 2019;53(1):3952. PubMed ID: 29648571 doi:10.1093/abm/kay015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Latomme J, Van Stappen V, Cardon G, et al. . The association between children’s and parents’ co-TV viewing and their total screen time in six European countries: cross-sectional data from the feel4diabetes-study. Int J Environ Res Public Health. 2018;15(11):2599. PubMed ID: 30469348 doi:10.3390/ijerph15112599

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Fogelholm M, Nuutinen O, Pasanen M, Myohanen E, Saatela T. Parent-child relationship of physical activity patterns and obesity. Int J Obes Relat Metab Disord. 1999;23(12):12621268. PubMed ID: 10643682 doi:10.1038/sj.ijo.0801061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Tremblay M, Carson V, Chaput J, et al. . Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Metab. 2016;41(6, suppl 3):S311S327. PubMed ID: 27306437 doi:10.1139/apnm-2016-0151

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 200 200 53
Full Text Views 367 367 0
PDF Downloads 92 92 0