The Role of Gender in Neuropsychological Assessment in Healthy Adolescents

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $74.00

1 year subscription

USD $99.00

Student 2 year subscription

USD $141.00

2 year subscription

USD $185.00

Context: Research in college athletes has revealed significant gender differences in areas of verbal memory, visual memory, and reaction time. Additionally, research has focused on differences in neuropsychological components and gender in college populations; however, such differences in gender have not been documented in healthy adolescent populations. Purpose: To identify potential differences between males and females using different components of a common computerized neuropsychological test. Methods: A computerized neuropsychological test battery (ImPACT®) was administered to 662 high-school age adolescent athletes (male: n = 451 female: n = 262). Differences between genders were calculated using a 1-way ANOVA. All statistical analyses were conducted using SPSS 23.0. Significance levels were set a priori at P < .05. Results: A 1-way ANOVA revealed statistically significant differences between males and females for composite reaction time (F1,660 = 10.68, P = .001) and total symptom score (F1,660 = 81.20, P < .001). However, no statistically significant differences were found between males and females in composite verbal memory, visual memory, visual motor, or impulse control (P > .05). Conclusions: Significant differences between males and females were discovered for composite reaction time and total symptom scores, with females reporting more symptoms and slower reaction times at a baseline assessment. Increased symptom reporting by females may be attributed to both hormonal differences and increased honesty. Quicker reaction times in males may support theories that repetition of activities and quicker muscle contraction are gender dependent. However, additional research is necessary to understand gender differences in adolescent athletes during periods of cognitive and physical maturation.

The authors are with the School of Health and Kinesiology, Georgia Southern University, Statesboro, GA.

Mormile (meganevelyne@gmail.com) is corresponding author.
Journal of Sport Rehabilitation
Article Sections
References
  • 1.

    Guskiewicz KWeaver NLPadua DAGarrett WE Jr. Epidemiology of concussion in collegiate and high school football players. Am J Sports Med. 2000;28(5):643650. PubMed doi:10.1177/03635465000280050401

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    The National Federation of State High School Association. 2014–2015 High school athletics participation survey. 2015. http://www.nfhs.org/ParticipationStatistics/PDF/2014-15_Participation_Survey_Results.pdf. Accessed July 18 2016.

    • Export Citation
  • 3.

    Irick E. NCAA sports sponsorship and participation research. 2015. http://www.ncaa.org/about/resources/research/sports-sponsorship-and-participation-research. Accessed July 18 2016.

    • Export Citation
  • 4.

    Bureau of Labor Statistics U.S Department of Labor. Occupational outlook handbook, 2016–2017 edition, athletes and sports competitors. 2015. http://www.bls.gov/ooh/entertainment-and-sports/athletes-and-sports-competitors.htm. Accessed July 16 2016.

    • Export Citation
  • 5.

    Marar MMcIlvain NMFields SKComstock RD. Epidemiology of concussions among united states high school athletes in 20 sports. Am J Sports Med. 2012;40(4):747755. PubMed doi:10.1177/0363546511435626

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kroshus EGarnett BHawrilenko MBaugh CMCalzo JP. Concussion under-reporting and pressure from coaches, teammates, fans, and parents. Soc Sci Med. 2015;134:6675. PubMed doi:10.1016/j.socscimed.2015.04.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    McCrea MHammeke TOlsen GLeo PGuskiewicz K. Unreported concussion in high school football players: implications for prevention. Clin J Sports Med. 2004;14(1):1317. PubMed doi:10.1097/00042752-200401000-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Register-Mihalik JGuskiewicz KMMihalik JPSchmidt JDKerr ZYMcCrea MA. Reliable change, sensitivity, and specificity of a multidimensional concussion assessment battery: implications for caution in clinical practice. J Head Trauma Rehabil. 2013;28(4):274283. PubMed doi:10.1097/HTR.0b013e3182585d37

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Halstead MWalter K. Sport related concussion in children and adolescents. Pediatrics. 2010;126(3):597615. PubMed doi:10.1542/peds.2010-2005

  • 10.

    Hunt TAsplund C. Concussion assessment and management. Clin Sports Med. 2010;29:517. PubMed doi:10.1016/j.csm.2009.09.002

  • 11.

    Broglio SPCantu RCGioia GAet al. National athletic trainers’ association position statement: management of sport concussion. J Athl Train. 2014;49(2):245265. PubMed doi:10.4085/1062-6050-49.1.07

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Iverson GLLovell MRCollins MW. Validity of ImPACT for measuring processing speed following sports-related concussion. J Clin Exp Neuropsychol. 2005;27(6):683689. PubMed doi:10.1081/13803390490918435

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Covassin TMoran RElbin RJ. Sex differences in reported concussion injury rates and time loss from participation: an update of the national collegiate athletic association injury surveillance program from 2004–2005 through 2008–2009. J Athl Train. 2016;51(3):189194. PubMed doi:10.4085/1062-6050-51.3.05

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Frommer LJGurka KKCross KMIngersoll CDComstock RDSaliba SA. Sex differences in concussion symptoms of high school athletes. J Athl Train. 2011;46(1):7684. PubMed doi:10.4085/1062-6050-46.1.76

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Broshek DKKaushik TFreeman JRErlanger DWebbe FBarth JT. Sex differences in outcome following sports-related concussion. J Neurosurg. 2005;102(5):856863. PubMed doi:10.3171/jns.2005.102.5.0856

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Dick RW. Is there a gender difference in concussion incidence and outcomes? Br J Sports Med. 2009;43:4650. PubMed doi:10.1136/bjsm.2009.058172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Tierney RTHiggins MCaswell SVet al. Sex differences in head acceleration during heading while wearing soccer headgear. J Athl Train. 2008;43(6):578584. PubMed doi:10.4085/1062-6050-43.6.578

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Stein DGHoffman SW. Estrogen and progesterone as neuroprotective agents in the treatment of acute brain injuries. Pediatr Rehabil. 2003;6(1):1322. PubMed doi:10.1080/1363849031000095279

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Wunderle KHoeger KMWasserman EBazarian JJ. Menstrual phase as predictor of outcome after mild traumatic brain injury in women. J Head Trauma Rehabil. 2014;29(5):E1E8. PubMed doi:10.1097/HTR.0000000000000006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Agha AThompson CJ. Anterior pituitary dysfunction following traumatic brain injury (TBI). Clin Endocrinol (Oxf). 2006;64(5):481488. PubMed doi:10.1111/j.1365-2265.2006.02517.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Newcombe NBandura MMTaylor DG. Sex differences in spatial ability and spatial activities. Sex Roles. 1983;9(3):377386. doi:10.1007/BF00289672

  • 22.

    Covassin TSwanik CBSachs Met al. Sex differences in baseline neuropsychological function and concussion symptoms of collegiate athletes. Br J Sports Med. 2006;40(11):923927. PubMed doi:10.1136/bjsm.2006.029496

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Shields S. The variability hypothesis: history of a biological model of sex differences in intelligence. J Women Cult Soc. 1982;7:769797. doi:10.1086/493921

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Hyde J. How large are cognitive gender differences? A meta-analysis using ω2 and d. Am Psychol. 1981;36(8):892901. doi:10.1037/0003-066X.36.8.892

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Weiss EKemmler GDeisenhammer EMargarete D. Sex differences in cognitive functions. Pers Individ Dif. 2008;35(4):863875. doi:10.1016/S0191-8869(02)00288-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Borowski LAYard EEFields SKComstock RD. The epidemiology of US high school basketball injuries, 2005–2007. Am J Sports Med. 2008;36(12):23282335. PubMed doi:10.1177/0363546508322893

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Brown DAElsass JAMiller AJReed LEReneker JC. Differences in symptom reporting between males and females at baseline and after a sports-related concussion: a systematic review and meta-analysis. Sports Med. 2015;45(7):10271040. PubMed doi:10.1007/s40279-015-0335-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Maerlender AFlashman LKessler A. Discriminant construct validity of ImPACT™: a companion study. Clin Neuropsychol. 2013;27(2):290299. doi:10.1080/13854046.2012.744098

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Schatz PPardini JELovell MRCollins MWPodell K. Sensitivity and specificity of the ImPACT test battery for concussion in athletes. Arch Clin Neuropsychol. 2006;21:9199. PubMed doi:10.1016/j.acn.2005.08.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Schatz P. Long-term test-retest reliability of baseline cognitive assessments using ImPACT. Am J Sports Med. 2010;38(1):4753. PubMed doi:10.1177/0363546509343805

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Erdal K. Neuropsychological testing for sports-related concussion: how athletes can sandbag their baseline testing without detection. Arch Clin Neuropsychol. 2012;27(5):473479. PubMed doi:10.1093/arclin/acs050

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Jain ABansal RKumar ASingh KD. A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students. Int J Appl Basic Med Res. 2015;5(2):124127. doi:10.4103/2229-516X.157168

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Dykiert D. Determinants and Correlates of Intra-Individual Variability in Reaction Time [dissertation]. Edinburgh, Scotland: The University of Edinburgh; 2011.

    • Search Google Scholar
    • Export Citation
  • 34.

    Blakemore SBurnett SDahl RE. The role of puberty in the developing adolescent brain. Hum Brain Mapp. 2010;31(6):926933. PubMed doi:10.1002/hbm.21052

  • 35.

    Kretzschmar JToole T. Gender differences in motor performance in early childhood and later adulthood. Women Sport Phys Act. 1993;2(1):4171. doi:10.1123/wspaj.2.1.41

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Maki PMRich JBRosenbaum RS. Implicit memory varies across the menstrual cycle: estrogen effects in young women. Neuropsychologia. 2002;40:518529. PubMed doi:10.1016/S0028-3932(01)00126-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 23 23 7
Full Text Views 4 4 0
PDF Downloads 2 2 0
Altmetric Badge
PubMed
Google Scholar
Cited By