Do Verbal and Tactile Cueing Selectively Alter Gluteus Maximus and Hamstring Recruitment During a Supine Bridging Exercise in Active Females? A Randomized Controlled Trial

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $74.00

1 year subscription

USD $99.00

Student 2 year subscription

USD $141.00

2 year subscription

USD $185.00

Context: Hip extension with hamstring-dominant rather than gluteus maximus-dominant recruitment may increase anterior femoracetabular forces and contribute to conditions that cause hip pain. Cueing methods during hip extension exercises may facilitate greater gluteus maximus recruitment. Objective: We examined whether specific verbal and tactile cues facilitate gluteus maximus recruitment while inhibiting hamstring recruitment during a bridging exercise. Design: Randomized controlled trial. Setting: Biomechanics laboratory. Participants: 30 young adult women (age 24 [3] y; BMI 22.2 [2.4] kg/m2). Intervention: Participants were tested over 2 sessions, 1 week apart, while performing 5 repetitions of a bridging exercise. At their second visit, participants in the experimental group received verbal and tactile cues intended to facilitate gluteus maximus recruitment and inhibit hamstring recruitment. Control group participants received no additional cues beyond original instructions. Main Outcome Measures: Gluteus maximus and hamstring recruitment were measured with surface electromyography, normalized to maximal voluntary isometric contractions (MVICs). Results: Gluteus maximus recruitment was unchanged in the control group and increased from 16.8 to 33.0% MVIC in the cueing group (F = 33.369, P < .001). Hamstring recruitment was unchanged in the control group but also increased from 16.5 to 29.8% MVIC in the cueing group (F = 6.400, P = .02). The effect size of the change in gluteus maximus recruitment in the cueing group (Cohen’s d = 1.5, 95% CI = 0.9 to 2.2) was not significantly greater than the effect size in hamstring recruitment (Cohen’s d = 0.8, 95% CI = 0.1 to 1.5). Conclusions: Verbal and tactile cues hypothesized to facilitate gluteus maximus recruitment yielded comparable increases in both gluteus maximus and hamstring recruitment. If one intends to promote hip extension by facilitating gluteus maximus recruitment while inhibiting hamstring recruitment during bridging exercises, the cueing methods employed in this study may not produce desired effects.

Hollman, Berling, Crum, Miller, Simmons, and Youdas are with the Program in Physical Therapy, Mayo Clinic College of Medicine, Rochester, MN; and also with the Dept of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, MN.

Address author correspondence to John H. Hollman at hollman.john@mayo.edu.
Journal of Sport Rehabilitation
Article Sections
References
  • 1.

    Fernandez MWall PO’Donnell JGriffin D. Hip pain in young adults. Aust Fam Physician. 2014;43(4):205209. PubMed

  • 2.

    Clohisy JCKnaus ERHunt DMLesher JMHarris-Hayes MPrather H. Clinical presentation of patients with symptomatic anterior hip impingement. Clin Orthop Relat Res. 2009;467(3):638644. PubMed doi:10.1007/s11999-008-0680-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ganz RParvizi JBeck MLeunig MNotzli HSiebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:112120. PubMed doi:10.1097/01.blo.0000096804.78689.c2

    • Search Google Scholar
    • Export Citation
  • 4.

    Clohisy JCBaca GBeaule PEet al. Descriptive epidemiology of femoroacetabular impingement: a North American cohort of patients undergoing surgery. Am J Sports Med. 2013;41(6):13481356. PubMed doi:10.1177/0363546513488861

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Iidaka TMuraki SAkune Tet al. Prevalence of radiographic hip osteoarthritis and its association with hip pain in Japanese men and women: the ROAD study. Osteoarthritis Cartilage. 2016;24(1):117123. PubMed doi:10.1016/j.joca.2015.07.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mason JB. Acetabular labral tears in the athlete. Clin Sports Med. 2001;20(4):779790. PubMed doi:10.1016/S0278-5919(05)70284-2

  • 7.

    McCarthy JCNoble PCSchuck MRWright JLee J. The Otto E. Aufranc Award: the role of labral lesions to development of early degenerative hip disease. Clin Orthop Relat Res. 2001;393:2537. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Shindle MKRanawat ASKelly BT. Diagnosis and management of traumatic and atraumatic hip instability in the athletic patient. Clin Sports Med. 2006;25(2):309326. PubMed doi:10.1016/j.csm.2005.12.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sahrmann SA. Diagnosis and Treatment of Movement Impairment Syndromes. St. Louis, MO: Mosby, Inc.; 2002.

  • 10.

    Lewis CLSahrmann SAMoran DW. Anterior hip joint force increases with hip extension, decreased gluteal force, or decreased iliopsoas force. J Biomech. 2007;40(16):37253731. PubMed doi:10.1016/j.jbiomech.2007.06.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lewis CLSahrmann SA. Muscle activation and movement patterns during prone hip extension exercise in women. J Athl Train. 2009;44(3):238248. PubMed doi:10.4085/1062-6050-44.3.238

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    McGill S. Core training: evidence translating to better performance and injury prevention. Strength Cond J. 2010;32(3):3346. doi:10.1519/SSC.0b013e3181df4521

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    McGill S. Ultimate Back Fitness and Performance. 5th ed. Waterloo, Canada: Backfitpro Inc.; 2014.

  • 14.

    Craig CLMarshall ALSjostrom Met al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):13811395. PubMed doi:10.1249/01.MSS.0000078924.61453.FB

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Criswell E. Cram’s Introduction to Surface Electromyography. 2nd ed. Sudbury, MA: Jones and Bartlett Publishers; 2011.

  • 16.

    Hislop HJMontgomery J. Daniels and Worthingham’s Muscle Testing: Techniques of Manual Examination. 8th ed. St. Louis, MO: Saunders Elsevier; 2007.

    • Search Google Scholar
    • Export Citation
  • 17.

    Boettcher CEGinn KACathers I. Standard maximum isometric voluntary contraction tests for normalizing shoulder muscle EMG. J Orthop Res. 2008;26(12):15911597. PubMed doi:10.1002/jor.20675

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bolgla LAUhl TL. Reliability of electromyographic normalization methods for evaluating the hip musculature. J Electromyogr Kinesiol. 2007;17(1):102111. PubMed doi:10.1016/j.jelekin.2005.11.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Worrell TWKarst GAdamczyk Det al. Influence of joint position on electromyographic and torque generation during maximal voluntary isometric contractions of the hamstrings and gluteus maximus muscles. J Orthop Sports Phys Ther. 2001;31(12):730740. PubMed doi:10.2519/jospt.2001.31.12.730

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bjerkefors AEkblom MMJosefsson KThorstensson A. Deep and superficial abdominal muscle activation during trunk stabilization exercises with and without instruction to hollow. Man Ther. 2010;15(5):502507. PubMed doi:10.1016/j.math.2010.05.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ekstrom RADonatelli RACarp KC. Electromyographic analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises. J Orthop Sports Phys Ther. 2007;37(12):754762. PubMed doi:10.2519/jospt.2007.2471

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ekstrom RAOsborn RWHauer PL. Surface electromyographic analysis of the low back muscles during rehabilitation exercises. J Orthop Sports Phys Ther. 2008;38(12):736745. PubMed doi:10.2519/jospt.2008.2865

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Jang EMKim MHOh JS. Effects of a bridging exercise with hip adduction on the EMG activities of the abdominal and hip extensor muscles in females. J Phys Ther Sci. 2013;25(9):11471149. PubMed doi:10.1589/jpts.25.1147

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Jeon ICHwang UJJung SHKwon OY. Comparison of gluteus maximus and hamstring electromyographic activity and lumbopelvic motion during three different prone hip extension exercises in healthy volunteers. Phys Ther Sport. 2016;22:3540. PubMed doi:10.1016/j.ptsp.2016.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kang SYJeon HSKwon OCynn HSChoi B. Activation of the gluteus maximus and hamstring muscles during prone hip extension with knee flexion in three hip abduction positions. Man Ther. 2013;18(4):303307. PubMed doi:10.1016/j.math.2012.11.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kang SYChoung SDJeon HS. Modifying the hip abduction angle during bridging exercise can facilitate gluteus maximus activity. Man Ther. 2016;22:211215. PubMed doi:10.1016/j.math.2015.12.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Arokoski JPValta TAiraksinen OKankaanpaa M. Back and abdominal muscle function during stabilization exercises. Arch Phys Med Rehabil. 2001;82(8):10891098. PubMed doi:10.1053/apmr.2001.23819

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Philippon MJDecker MJGiphart JETorry MRWahoff MSLaPrade RF. Rehabilitation exercise progression for the gluteus medius muscle with consideration for iliopsoas tendinitis: an in vivo electromyography study. Am J Sports Med. 2011;39(8):17771786. PubMed doi:10.1177/0363546511406848

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Stevens VKBouche KGMahieu NNCoorevits PLVanderstraeten GGDanneels LA. Trunk muscle activity in healthy subjects during bridging stabilization exercises. BMC Musculoskelet Disord. 2006;7(1):75. PubMed doi:10.1186/1471-2474-7-75

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Conable KCorneal JHambrick TMarquina NZhang J. Electromyogram and force patterns in variably timed manual muscle testing of the middle deltoid muscle. J Manipulative Physiol Ther. 2006;29(4):305314. PubMed doi:10.1016/j.jmpt.2006.03.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Bilodeau MSchindler-Ivens SWilliams DMChandran RSharma SS. EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. J Electromyogr Kinesiol. 2003;13(1):8392. PubMed doi:10.1016/S1050-6411(02)00050-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 62 62 22
Full Text Views 1 1 0
PDF Downloads 1 1 0
Altmetric Badge
PubMed
Google Scholar