Effects of Self-Myofascial Release on Shoulder Function and Perception in Adolescent Tennis Players

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $74.00

1 year subscription

USD $99.00

Student 2 year subscription

USD $141.00

2 year subscription

USD $185.00

Context: Tennis induces a decreased internal rotation range of motion at the dominant glenohumeral joint. The effects of self-myofascial release have not yet been investigated to restore glenohumeral range of motion. Objective: This study aimed at investigating the effects of self-myofascial release on shoulder function and perception in adolescent tennis players. Design: Test–retest design. Setting: Tennis training sport facilities. Participants: Eleven male players participated in this study (age: 15 [3] y; height: 173.1 [11.1] cm; mass: 56.0 [15.1] kg; International Tennis Number: 3). Intervention: During 5 weeks, the players performed their regular tennis training. During 5 additional weeks, self-myofascial release of the infraspinatus and pectoralis muscles was implemented 3 times per week after the warm-up of the regular training session. Main Outcome Measures: The primary outcome was glenohumeral internal rotation range of motion. The secondary outcomes were perceived shoulder instability and tennis serve accuracy and velocity. Results: Adding self-myofascial release allowed an increase of 11° (2°) of internal rotation range of motion at the dominant glenohumeral joint (P < .001) and a decreased perception of shoulder instability (P = .03), while maintaining tennis serve velocity and accuracy. Conclusions: Implementing self-myofascial release on infraspinatus and pectoralis muscles 3 times per week during 5 weeks improved dominant glenohumeral internal rotation range of motion in tennis players. It can be used as a strategy to preserve the mobility of this joint.

Le Gal, Gillet, and Rogowski are with the Laboratoire Interuniversitaire de Biologie de la Motricité, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne Cedex, France. Begon and Gillet are with the Laboratoire de Simulation et de Modélisation du Mouvement (S2M), Département de Kinésiologie, Université de Montréal, Laval, Québec, Canada. Begon is with the Centre de Réadaptation Marie-Enfant, Centre de recherche du CHU Sainte-Justine, Montréal, Québec, Canada.

Rogowski (isabelle.rogowski@univ-lyon1.fr) is corresponding author.
Journal of Sport Rehabilitation
Article Sections
References
  • 1.

    Martin CKulpa REzanno FDelamarche PBideau B. Influence of playing a prolonged tennis match on shoulder internal range of motion. Am J Sports Med. 2016;44:21472151. PubMed ID: 27184541 doi:10.1177/0363546516645542

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Moore-Reed SDKibler WBMyers NLSmith BJ. Acute changes in passive glenohumeral rotation following tennis play exposure in elite female players. Int J Sports Phys Ther. 2016;11:230236. PubMed ID: 27104056

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Taylor REZheng CJackson RPet al. The phenomenon of twisted growth: humeral torsion in dominant arms of high performance tennis players. Comp Meth Biomech Biomed Eng. 2009; 12:8393. doi:10.1080/10255840802178046

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Crockett HCGross LBWilk KEet al. Osseous adaptation and range of motion at the glenohumeral joint in professional baseball pitchers. Am J Sports Med. 2002;30:2026. PubMed ID: 11798991 doi:10.1177/03635465020300011701

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Thomas SJSwanik CBHigginson JSet al. A bilateral comparison of posterior capsule thickness and its correlation with glenohumeral range of motion and scapular upward rotation in collegiate baseball players. J Shoulder Elbow Surg. 2011;20:708716. PubMed ID: 21167742 doi:10.1016/j.jse.2010.08.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Burkhart SSMorgan CDKibler BW. The disabled throwing shoulder: spectrum of pathology part III: the SICK scapula, scapular dyskinesis, the kinetic chain, and rehabilitation. Arthroscopy. 2003;19:641661. PubMed ID: 12861203 doi:10.1016/S0749-8063(03)00389-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Borstad JDLudewig PM. The effect of long versus short pectoralis minor resting length on scapular kinematics in healthy individuals. J Orthop Sports Phys Ther. 2005;35:227238. PubMed ID: 15901124 doi:10.2519/jospt.2005.35.4.227

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Borich MRBright JMLorello DJCieminski CJBuisman TLudewig PM. Scapular angular positioning at end range internal rotation in cases of glenohumeral internal rotation deficit. J Orthop Sports Phys Ther. 2006;36:926934. PubMed ID: 17193870 doi:10.2519/jospt.2006.2241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kibler BWThomas SJ. Pathomechanics of the throwing shoulder. Sports Med Arthrosc Rev. 2012;20:2229. PubMed ID: 22311289 doi:10.1097/JSA.0b013e3182432cf2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kibler BWSciascia AThomas SJ. Glenohumeral internal rotation deficit: pathogenesis and response to acute throwing. Sports Med Arthrosc Rev. 2012;20:3438. PubMed ID: 22311291 doi:10.1097/JSA.0b013e318244853e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Takenaga TSugimoto KGoto Het al. Posterior shoulder capsules are thicker and stiffer in the throwing shoulders of healthy college baseball players: a quantitative assessment using shear-wave ultrasound elastography. Am J Sports Med. 2015;43:29352942. PubMed ID: 26473012 doi:10.1177/0363546515608476

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gillet BBegon MSevrez VBerger-Vachon CRogowski I. Adaptive alterations in shoulder range of motion and strength in young tennis players. J Athl Train. 2017;52:137144. PubMed ID: 28145740 doi:10.4085/1062-6050.52.1.10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cools AMPalmans TJohansson FR. Age-related, sport-specific adaptions of the shoulder girdle in elite adolescent tennis players. J Athl Train. 2014;49:647653. PubMed ID: 25098662 doi:10.4085/1062-6050-49.3.02

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kibler WBChandler TJLivingston BPRoetert EP. Shoulder range of motion in elite tennis players: effect of age and years of tournament play. Am J Sports Med. 1996;24:279285. PubMed ID: 8734876 doi:10.1177/036354659602400306

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Manske RWilk KEDavies GEllenbecker TReinold M. Glenohumeral motion deficits: friend or foe? Int J Sports Phys Ther. 2013;8:537553. PubMed ID: 24175137

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Mine KNakayama TMilanese SGrimmer K. Effectiveness of stretching on posterior shoulder tightness and glenohumeral internal rotation deficit: a systematic review of randomized controlled trials. J Sport Rehabil. 2017;26(4):294305. doi:10.1123/jsr.2015-0172

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Schroeder ANBest TM. Is self myofascial release an effective preexercise and recovery strategy? A literature review. Curr Sports Med Rep. 2015;14:200208. doi:10.1249/JSR.0000000000000148

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bradbury-Squires DJNoftall JCSullivan KMBehm DGPower KEButton DC. Roller-massager application to the quadriceps and knee-joint range of motion and neuromuscular efficiency during a lunge. J Athl Train. 2015;50:133140. PubMed ID: 25415414 doi:10.4085/1062-6050-49.5.03

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    MacDonald GZPenney MDHMullaley MEet al. An acute bout of self-myofascial release increases range of motion without a subsequent decrease in muscle activation or force. J Strength Cond Res. 2013;27:812821. PubMed ID: 22580977 doi:10.1519/JSC.0b013e31825c2bc1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    MacDonald GZButton DCDrinkwater EJBehm DG. Foam rolling as a recovery tool after an intense bout of physical activity. Med Sci Sports Exerc. 2014;46:131142. PubMed ID: 24343353 doi:10.1249/MSS.0b013e3182a123db

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Mohr ARLong BCGoad CL. Effect of foam rolling and static stretching on passive hip-flexion range of motion. J Sport Rehabil. 2014;23:296299. doi:10.1123/JSR.2013-0025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bushell JEDawson SMWebster MM. Clinical relevance of foam rolling on hip extension angle in a functional lunge position. J Strength Cond Res. 2015;29:23972403. PubMed ID: 25734777 doi:10.1519/JSC.0000000000000888

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Lädermann AChagué SKolo FCChow JCKCharbonnier C. Kinematics of the shoulder joint in tennis players. J Sci Med Sport. 2014;19:5663. doi:10.1016/j.jsams.2014.11.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Healey KCHatfield DLBlanpied PDorfman LRRiebe D. The effects of myofascial release with foam rolling on performance. J Strength Cond Res. 2014;28:6168. PubMed ID: 23588488 doi:10.1519/JSC.0b013e3182956569

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Wilk KReinold MMacrina Let al. Glenohumeral internal rotation measurements differ depending on stabilization techniques. Sport Health. 2009;1:131136. doi:10.1177/1941738108331201

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30:115. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Gaudelli CBalg FGodbout Vet al. Validity, reliability and responsiveness of the French language translation of the Western Ontario Shoulder Instability Index (WOSI). Ortho Trauma Surg Res. 2014;100:99103. doi:10.1016/j.otsr.2013.09.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Kirkley AGriffin SMcLintock HNg L. The development and evaluation of a disease-specific quality of life measurement tool for shoulder instability: the Western Ontario Shoulder Instability Index (WOSI). Am J Sports Med. 1998;26:764772. PubMed ID: 9850776 doi:10.1177/03635465980260060501

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Fernandez-Fernandez JUlbricht AFerrauti A. Fitness testing of tennis players: how valuable is it? Br J Sports Med. 2014;48:2231. PubMed ID: 24668375 doi:10.1136/bjsports-2013-093152

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 31.

    Burkhart SSMorgan CDKibler WB. The disabled throwing shoulder: spectrum of pathology part I: pathoanatomy and biomechanics. Arthroscopy. 2003;19:404420. PubMed ID: 12671624 doi:10.1053/jars.2003.50128

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ellenbecker TSRoetert PEPiorkowski PASchulz DA. Glenohumeral joint internal and external rotation range of motion in elite junior tennis players. J Ortho Sports Phys Ther. 1996;24:336341. doi:10.2519/jospt.1996.24.6.336

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Chandler TJKibler WBUhl TLWooten BKiser AStone E. Flexibility comparisons of junior elite tennis players to other athletes. Am J Sports Med. 1990;18:134136. PubMed ID: 2343979 doi:10.1177/036354659001800204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Reagan KMMeister KHorodyski MBWerner DWCarruthers CWilk K. Humeral retroversion and its relationship to glenohumeral motion in the shoulder of college baseball players. Am J Sports Med. 2002;30:354360. doi:10.1177/03635465020300030901

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Schmidt-Wiethoff RRapp WMauch FSchneider TAppell HJ. Shoulder rotation characteristics in professional tennis players. Int J Sports Med. 2004;25:154158. PubMed ID: 14986201 doi:10.1055/s-2004-819947

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Cools AMJohansson FRCagnie BCambier DCWitvrouw EE. Stretching the posterior shoulder structures in subjects with internal rotation deficit: comparison of two stretching techniques. Shoulder Elbow. 2012;4:5663. doi:10.1111/j.1758-5740.2011.00159.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Torres RRGomes JLE. Measurement of glenohumeral internal rotation in asymptomatic tennis players and swimmers. Am J Sports Med. 2009;37:10171023. PubMed ID: 19261903 doi:10.1177/0363546508329544

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Weerapong PHume PAKolt GS. The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med. 2005;35:235256. PubMed ID: 15730338 doi:10.2165/00007256-200535030-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Shaha JSCook JBSong DJet al. Redefining “critical” bone loss in shoulder instability functional outcomes worsen with “subcritical” bone loss. Am J Sports Med. 2015;43:17191725. PubMed ID: 25883168 doi:10.1177/0363546515578250

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Schroder DTProvencher MTMologne TSMuldoon MPCox JS. The modified Bristow procedure for anterior shoulder instability: 26-year outcomes in naval academy midshipmen. Am J Sports Med. 2006;34:778786.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Arroyo-Morales MOlea NMartínez MMHidalgo-Lozano ARuiz-Rodríguez CDíaz-Rodríguez L. Psychophysiological effects of massage-myofascial release after exercise: a randomized sham-control study. J Altern Complement Med. 2008;14:12231229. doi:10.1089/acm.2008.0253

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Kirkley AAlvarez CGriffin S. The development and evaluation of a disease-specific quality-of-life questionnaire for disorders of the rotator cuff: the Western Ontario Rotator Cuff Index. Clin J Sport Med. 2003;13:8492. PubMed ID: 12629425 doi:10.1097/00042752-200303000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    St-Pierre CDionne CEDesmeules FRoy JS. Reliability, validity, and responsiveness of a Canadian French adaptation of the Western Ontario Rotator Cuff (WORC) index. J Hand Ther. 2015;28:292299. PubMed ID: 25990445 doi:10.1016/j.jht.2015.02.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 151 151 73
Full Text Views 11 11 6
PDF Downloads 6 6 4
Altmetric Badge
PubMed
Google Scholar