Acute Effects and Perceptions of Deep Oscillation Therapy for Improving Hamstring Flexibility

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $74.00

1 year subscription

USD $99.00

Student 2 year subscription

USD $141.00

2 year subscription

USD $185.00

Context: Hamstring inflexibility is typically treated using therapeutic massage, stretching, and soft tissue mobilization. An alternative intervention is deep oscillation therapy (DOT). Currently, there is a lack of evidence to support DOT’s effectiveness to improve flexibility. Objective: To explore the effectiveness of DOT to improve hamstring flexibility. Design: Randomized single-cohort design. Setting: Research laboratory. Participants: Twenty-nine healthy, physically active individuals (self-reported activity of a minimum 200 min/wk). Interventions: All participants received a single session of DOT with randomization of the participant’s leg for the intervention. The DOT intervention parameters included a 1∶1 mode and 70% to 80% dosage at various frequencies for 28 minutes. Hamstring flexibility was assessed using passive straight leg raise for hip flexion using a digital inclinometer. Patient-reported outcomes were evaluated using the Copenhagen Hip and Groin Outcome Score and the Global Rating of Change (GRoC). Main Outcome Measure: The independent variable was time (pre and post). The dependent variables included passive straight leg raise, the GRoC, and the participant’s perceptions of the intervention. Statistical analyses included a dependent t test and a Pearson correlation. Results: Participants reported no issues with sport, activities of daily living, or quality of life prior to beginning the intervention study on the Copenhagen Hip and Groin Outcome Score. Passive straight leg raise significantly improved post-DOT (95% confidence interval, 4.48°–7.85°, P < .001) with a mean difference of 6.17 ± 4.42° (pre-DOT = 75.43 ± 21.82° and post-DOT = 81.60 ± 23.17°). A significant moderate positive correlation was identified (r = .439, P = .02) among all participants between the GRoC and the mean change score of hamstring flexibility. Participants believed that the intervention improved their hamstring flexibility (5.41 ± 1.02 points) and was relaxing (6.21 ± 0.86). Conclusions: DOT is an effective intervention to increase hamstring flexibility.

The authors are with Neuromechanics, Interventions, and Continuing Education Research (NICER) Laboratory, Department of Applied Medicine and Rehabilitation, Indiana State University, Terre Haute, IN.

Winkelmann (zwinkelmann@indstate.edu) is corresponding author.
Journal of Sport Rehabilitation
Article Sections
References
  • 1.

    Liu HGarrett WEMoorman CTYu B. Injury rate, mechanism, and risk factors of hamstring strain injuries in sports: a review of the literature. J Sport Health Sci. 2012;1(2):92101. doi:10.1016/j.jshs.2012.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Funk DSwank AMAdams KJTreolo D. Efficacy of moist heat pack application over static stretching on hamstring flexibility. J Strength Cond Res. 2001;15(1):123126. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Knight KLDraper DO. Therapeutic Modalities: The Art and the Science. Baltimore, MD: Lippincott Williams & Wilkins; 2008.

  • 4.

    Schleip R. Fascial mechanoreceptors and their potential role in deep tissue manipulation. J Bodyw Mov Ther. 2003;7(7): 104116.

  • 5.

    Schleip R. Fascial plasticity—a new neurobiological explanation: part 1. J Bodyw Mov Ther. 2003;7(1):1119. doi:10.1016/S1360-8592(02)00067-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Boisnic SBranchet MC. Anti-inflammatory and draining effect of the Deep Oscillation® device tested clinically and on a model of human skin maintained in survival condition. Eur J Dermatol. 2013;23(1):5963. PubMed doi:10.1684/ejd.2012.1904

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kraft KKanter SJanik H. Safety and effectiveness of vibration massage by deep oscillations: a prospective observational study. Evid Based Complement Alternat Med. 2013;2013:679248. PubMed doi:10.1155/2013/679248

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Jahr SSchoppe BReisshauer A. Effect of treatment with low-intensity and extremely low-frequency electrostatic fields (Deep Oscillation®) on breast tissue and pain in patients with secondary breast lymphoedema. J Rehabil Med. 2008;40(8):645650. PubMed doi:10.2340/16501977-0225

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Hinman MRLundy RPerry ERobbins KViertel L. Comparative effect of ultrasound and deep oscillation on the extensibility of hamstring muscles. J Athl Med. 2013;1(1):4555.

    • Search Google Scholar
    • Export Citation
  • 10.

    Atkinson R. A simple theory of the Johnsen-Rahbek effect. J Phys Appl Phys. 1969;2(3):325332. doi:10.1088/0022-3727/2/3/303

  • 11.

    Johnson MDHensel CLMatheson DW. Vibration effects on three measures of relaxation. Percept Mot Skills. 1982;54(3 pt 2):10711076. PubMed doi:10.2466/pms.1982.54.3c.1071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Rittweger JMutschelknauss MFelsenberg D. Acute changes in neuromuscular excitability after exhaustive whole body vibration exercise as compared to exhaustion by squatting exercise. Clin Physiol Funct Imaging. 2003;23(2):8186. PubMed doi:10.1046/j.1475-097X.2003.00473.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Wakeling JMNigg BMRozitis AI. Muscle activity damps the soft tissue resonance that occurs in response to pulsed and continuous vibrations. J Appl Physiol. 2002;93(3):10931103. PubMed doi:10.1152/japplphysiol.00142.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Aliyev R. Better functional results of conservative treatment in fresh lateral ligament injuries of the ankle with additional deep oscillation. Phys Med Rehab Huror. 2012;22(1):915. doi:10.1055/s-0031-1295494

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Prushansky TDeryi OJabarreen B. Reproducibility and validity of digital inclinometry for measuring cervical range of motion in normal subjects. Physiother Res Int. 2010;15(1):4248. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kolber MJHanney WJ. The reliability and concurrent validity of shoulder mobility measurements using a digital inclinometer and goniometer: a technical report. Int J Sports Phys Ther. 2012;7(3):306313. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Fabrication Enterprises Inc. Digital inclinometer 12-1057 operating instructions. In: Instruction Manual. White Plains, NY: Fabrication Enterprises Inc; 2014. https://www.fab-ent.com/media/41_Instructions/12-1057_inst_rev030414_v2.pdf

    • Search Google Scholar
    • Export Citation
  • 18.

    Ylinen JJKautiainen HJHäkkinen AH. Comparison of active, manual, and instrumental straight leg raise in measuring hamstring extensibility. J Strength Cond Res. 2010;24(4):972977. PubMed doi:10.1519/JSC.0b013e3181d0a55f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Thorborg KHolmich PChristensen RPetersen JRoos EM. The Copenhagen Hip and Groin Outcome Score (HAGOS): development and validation according to the COSMIN checklist. Br J Sports Med. 2011;45(6):478491. PubMed doi:10.1136/bjsm.2010.080937

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Costa LOMaher CGLatimer Jet al. Clinimetric testing of three self-report outcome measures for low back pain patients in Brazil: which one is the best? Spine. 2008;33(22):24592463. PubMed doi:10.1097/BRS.0b013e3181849dbe

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Draper DOHawkes ARJohnson AWDiede MTRigby JH. Muscle heating with Megapulse II shortwave diathermy and ReBound diathermy. J Athl Train. 2013;48(4):477482. PubMed doi:10.4085/1062-6050-48.3.01

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Scallan JHuxley VHKorthuis RJ. Capillary fluid exchange: regulation, functions, and pathology. In: Granger DNGranger JP eds. Colloquium Lectures on Integrated Systems Physiology—From Molecules to Function. New Jersey: Morgan & Claypool Life Sciences; 2010.

    • Search Google Scholar
    • Export Citation
  • 23.

    Mohr ARLong BCGoad CL. Effect of foam rolling and static stretching on passive hip-flexion range of motion. J Sport Rehabil. 2014;23(4):296299. PubMed doi:10.1123/JSR.2013-0025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Nelson RTBandy WD. Eccentric training and static stretching improve hamstring flexibility of high school males. J Athl Train. 2004;39(3):254258. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Morgan DLProske U. Popping sarcomere hypothesis explains stretch-induced muscle damage. Clin Exp Pharmacol Physiol. 2004;31(8):541545. PubMed doi:10.1111/j.1440-1681.2004.04029.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Dixon JKKeating JL. Variability in straight leg raise measurements: review. Physiotherapy. 2000;86(7):361370. doi:10.1016/S0031-9406(05)60630-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Connell DASchneider-Kolsky MEHoving JLet al. Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. AJR Am J Roentgenol. 2004;183(4):975984. PubMed doi:10.2214/ajr.183.4.1830975

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Aliyev R. Clinical effects of the therapy method deep oscillation in treatment of sports injuries. Sportverletz Sportschaden. 2009;23(1):3134. PubMed doi:10.1055/s-0028-1109216

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Shinohara MMoritz CTPascoe MAEnoka RM. Prolonged muscle vibration increases stretch reflex amplitude, motor unit discharge rate, and force fluctuations in a hand muscle. J Appl Physiol. 2005;99(5):18351842. PubMed doi:10.1152/japplphysiol.00312.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Goldberg JSullivan SJSeaborne DE. The effect of two intensities of massage on H-reflex amplitude. Phys Ther. 1992;72(6):449457. PubMed doi:10.1093/ptj/72.6.449

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Law RYHarvey LANicholas MKTonkin LDe Sousa MFinniss DG. Stretch exercises increase tolerance to stretch in patients with chronic musculoskeletal pain: a randomized controlled trial. Phys Ther. 2009;89(10):10161026. PubMed doi:10.2522/ptj.20090056

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Tápanes SSuárez AAcosta TRojas RPrento BMorales M. Value of deep oscillation therapy in the healing of AB burns. Cuban J Phys Med Rehabil. 2010;2(1):110.

    • Search Google Scholar
    • Export Citation
  • 33.

    Swartz MA. The physiology of the lymphatic system. Adv Drug Deliv Rev. 2001;50(1–2):320. PubMed doi:10.1016/S0169-409X(01)00150-8

  • 34.

    Cafarelli EFlint F. The role of massage in preparation for and recovery from exercise. An overview. Sports Med. 1992;14(1):19. PubMed doi:10.2165/00007256-199214010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    DeJarnette MB. The fibrous adhesion. J Bloodless Surg. 1939;1(1–2):1924.

  • 36.

    Gasbarro VBartoletti RTsolaki ESileno SAgnati MConti M. Role of Hivamat (Deep Oscillation®) in the treatment for the lymphedema of the limbs. Eur J Lymphol. 2006;16:1315.

    • Search Google Scholar
    • Export Citation
  • 37.

    Gersh ICatchpole HR. The organization of ground substance and basement membrane and its significance in tissue injury disease and growth. Am J Anat. 1949;85(3):457521. PubMed doi:10.1002/aja.1000850304

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Robergs RAGhiasvand FParker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. 2004;287(3):502516. PubMed doi:10.1152/ajpregu.00114.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Edman KAPCurtin NA. Synchronous oscillations of length and stiffness during loaded shortening of frog muscle fibres. J Physiol. 2001;534(pt 2):553563. PubMed doi:10.1111/j.1469-7793.2001.t01-2-00553.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 165 165 58
Full Text Views 12 12 1
PDF Downloads 6 6 0
Altmetric Badge
PubMed
Google Scholar