Motoneuron Function Does not Change Following Whole-Body Vibration in Individuals With Chronic Ankle Instability

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $74.00

1 year subscription

USD $99.00

Student 2 year subscription

USD $141.00

2 year subscription

USD $185.00

Context: Following a lateral ankle sprain, ∼40% of individuals develop chronic ankle instability (CAI), characterized by recurrent injury and sensations of giving way. Deafferentation due to mechanoreceptor damage postinjury is suggested to contribute to arthrogenic muscle inhibition (AMI). Whole-body vibration (WBV) has the potential to address the neurophysiologic deficits accompanied by CAI and, therefore, possibly prevent reinjury. Objective: To determine if an acute bout of WBV can improve AMI and proprioception in individuals with CAI. Design and Participants: The authors examined if an acute bout of WBV can improve AMI and proprioception in individuals with CAI with a repeated-measures design. A total of 10 young adults with CAI and 10 age-matched healthy controls underwent a control, sham, and WBV condition in randomized order. Setting: Biomechanics laboratory. Intervention: WBV. Main Outcome Measures: Motoneuron pool recruitment was assessed via Hoffmann reflex (H-reflex) in the soleus. Proprioception was evaluated using ankle joint position sense at 15° and 20° of inversion. Both were assessed prior to, immediately following, and 30 minutes after the intervention (pretest, posttest, and 30mPost, respectively). Results: Soleus maximum H-reflex:M-response (H:M) ratios were 25% lower in the CAI group compared with the control group (P = .03). Joint position sense mean constant error did not differ between groups (P = .45). Error at 15° in the CAI (pretest 0.8 [1.6], posttest 2.0 [2.8], 30mPost 2.0 [1.9]) and control group (pretest 0.8 [2.0], posttest 0.6 [2.9], 30mPost 0.5 [2.1]) did not improve post-WBV. Error at 20° did not change post-WBV in the CAI (pretest 1.3 [1.7], posttest 1.0 [2.4], 30mPost 1.5 [2.2]) or control group (pretest −0.3 [3.0], posttest 0.8 [2.1], 30mPost 0.6 [1.8]). Conclusion: AMI is present in the involved limb of individuals with CAI. The acute response following a single bout of WBV did not ameliorate the presence of AMI nor improve proprioception in those with CAI.

Otzel is with North Florida/South Georgia Veterans Health System, Brain Rehabilitation Research Center, Gainesville, FL. Hass and Borsa are with the Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL. Wikstrom is with the Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC. Bishop is with the Department of Physical Therapy, University of Florida, Gainesville, FL. Tillman is with the WellStar College of Health and Human Services, Kennesaw State University, Kennesaw, GA.

Otzel (Dana.Otzel@va.gov) is corresponding author.
Journal of Sport Rehabilitation
Article Sections
References
  • 1.

    Waterman BROwens BDDavey SZacchilli MABelmont PJ Jr. The epidemiology of ankle sprains in the United States. J Bone Joint Surg Am. 2010;92(13):22792284. PubMed ID: 20926721 doi:10.2106/JBJS.I.01537

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Doherty CBleakley CHertel JCaulfield BRyan JDelahunt E. Recovery from a first-time lateral ankle sprain and the predictors of chronic ankle instability: a prospective cohort analysis. Am J Sports Med. 2016;44(4):9951003. PubMed ID: 26912285 doi:10.1177/0363546516628870

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Gribble PADelahunt EBleakley Cet al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium. J Orthop Sports Phys Ther. 2013;43(8):585591. PubMed ID: 23902805 doi:10.2519/jospt.2013.0303

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Wikstrom EATillman MDChmielewski TLCauraugh JHNaugle KEBorsa PA. Self-assessed disability and functional performance in individuals with and without ankle instability: a case control study. J Orthop Sports Phys Ther. 2009;39(6):458467. PubMed ID: 19487824 doi:10.2519/jospt.2009.2989

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Munn J.Sullivan SJSchneiders AG. Evidence of sensorimotor deficits in functional ankle instability: a systematic review with meta-analysis. J Sci Med Sport. 2010;13(1):212. PubMed ID: 19442581 doi:10.1016/j.jsams.2009.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Brown TDJohnston RCSaltzman CLMarsh JLBuckwalter JA. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma. 2006;20(10):739744. PubMed ID: 17106388 doi:10.1097/01.bot.0000246468.80635.ef

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    McVey EDPalmieri RMDocherty CLZinder SMIngersoll CD. Arthrogenic muscle inhibition in the leg muscles of subjects exhibiting functional ankle instability. Foot Ankle Int. 2005;26(12):10551061. PubMed ID: 16390639 doi:10.1177/107110070502601210

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hopkins JTIngersoll CD. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9:135159. doi:10.1123/jsr.9.2.135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Palmieri-Smith RMHopkins JTBrown TN. Peroneal activation deficits in persons with functional ankle instability. Am J Sports Med. 2009;37(5):982988. PubMed ID: 19270189 doi:10.1177/0363546508330147

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Sekir UYildiz YHazneci BOrs FAydin T. Effect of isokinetic training on strength, functionality and proprioception in athletes with functional ankle instability. Knee Surg Sports Traumatol Arthrosc. 2007;15(5):654664. PubMed ID: 16770637 doi:10.1007/s00167-006-0108-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bullock-Saxton JEJanda VBullock MI. The influence of ankle sprain injury on muscle activation during hip extension. Int J Sports Med. 1994;15(6):330334. PubMed ID: 7822072 doi:10.1055/s-2007-1021069

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Evans THertel JSebastianelli W. Bilateral deficits in postural control following lateral ankle sprain. Foot Ankle Int. 2004;25(11):833839. PubMed ID: 15574245 doi:10.1177/107110070402501114

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hass CJBishop MDDoidge DWikstrom EA. Chronic ankle instability alters central organization of movement. Am J Sports Med. 2010;38(4):829834. PubMed ID: 20139327 doi:10.1177/0363546509351562

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Van Deun SStaes FFStappaerts KHJanssens LLevin OPeers KK. Relationship of chronic ankle instability to muscle activation patterns during the transition from double-leg to single-leg stance. Am J Sports Med. 2007;35(2):274281. PubMed ID: 17192320 doi:10.1177/0363546506294470

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Wikstrom EATillman MDChmielewski TLCauraugh JHNaugle KEBorsa PA. Dynamic postural control but not mechanical stability differs among those with and without chronic ankle instability. Scand J Med Sci Sports. 2010;20(1):137144. PubMed ID: 19422654 doi:10.1111/j.1600-0838.2009.00929.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    McKeon JMMcKeon PO. Evaluation of joint position recognition measurement variables associated with chronic ankle instability: a meta-analysis. J Athl Train. 2012;47(4):444456. PubMed ID: 22889661 doi:10.4085/1062-6050-47.4.15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Games KESefton JMWilson AE. Whole-body vibration and blood flow and muscle oxygenation: a meta-analysis. J Athl Train. 2015;50(5):542549. PubMed ID: 25974682 doi:10.4085/1062-6050-50.2.09

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Osawa YOguma YIshii N. The effects of whole-body vibration on muscle strength and power: a meta-analysis. J Musculoskelet Neuronal Interact. 2013;13(3):380390. PubMed ID: 23989260

    • Search Google Scholar
    • Export Citation
  • 19.

    Kipp KJohnson STDoeringer JRHoffman MA. Spinal reflex excitability and homosynaptic depression after a bout of whole-body vibration. Muscle Nerve. 2011;43(2):259262. PubMed ID: 21254092 doi:10.1002/mus.21844

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Rittweger J. Vibration as an exercise modality: how it may work, and what its potential might be. Eur J Appl Physiol. 2010;108(5):877904. PubMed ID: 20012646 doi:10.1007/s00421-009-1303-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Nishihira YIwasaki THatta Aet al. Effect of whole body vibration stimulus and voluntary contraction on motorneuron pool. Jpn Soc Exerc Sports Physiol. 2002;10:8386.

    • Search Google Scholar
    • Export Citation
  • 22.

    McBride JMNuzzo JLDayne AMIsraetel MANieman DCTriplett NT. Effect of an acute bout of whole body vibration exercise on muscle force output and motor neuron excitability. J Strength Cond Res. 2010;24(1):184189. PubMed ID: 19816218 doi:10.1519/JSC.0b013e31819b79cf

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Armstrong WJNestle HNGrinnell DCet al. The acute effect of whole-body vibration on the Hoffmann reflex. J Strength Cond Res. 2008;22(2):471476. PubMed ID: 18550962 doi:10.1519/JSC.0b013e3181660605

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Apple SEhlert KHysinger PNash CVoight MSells P. The effect of whole body vibration on ankle range of motion and the H-reflex. N Am J Sports Phys Ther. 2010;5(1):3339. PubMed ID: 21509156

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ritzmann RKramer AGollhofer ATaube W. The effect of whole body vibration on the H-reflex, the stretch reflex, and the short-latency response during hopping. Scand J Med Sci Sports. 2013;23(3):331339. PubMed ID: 23802287 doi:10.1111/j.1600-0838.2011.01388.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cloak RNevill AMClarke FDay SWyon MA. Vibration training improves balance in unstable ankles. Int J Sports Med. 2010;31(12):894900. PubMed ID: 21072738 doi:10.1055/s-0030-1265151

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hale SAHertel J. Reliability and sensitivity of the foot and ankle disability index in subjects with chronic ankle instability. J Athl Train. 2005;40(1):3540. PubMed ID: 15902322

    • Search Google Scholar
    • Export Citation
  • 28.

    de Hoyo MCarrasco LDa Silva-Grigoletto MEet al. Impact of an acute bout of vibration on muscle contractile properties, creatine kinase and lactate dehydrogenase response. Eur J Sport Sci. 2013;13(6):666673. PubMed ID: 24251744 doi:10.1080/17461391.2013.774052

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Zehr EP. Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol. 2002;86(6):455468. PubMed ID: 11944092 doi:10.1007/s00421-002-0577-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cochrane DJStannard SRFirth ECRittweger J. Acute whole-body vibration elicits post-activation potentiation. Eur J Appl Physiol. 2010;108(2):311319. PubMed ID: 19795130 doi:10.1007/s00421-009-1215-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Sayenko DGMasani KAlizadeh-Meghrazi MPopovic MRCraven BC. Acute effects of whole body vibration during passive standing on soleus H-reflex in subjects with and without spinal cord injury. Neurosci Lett. 2010;482(1):6670. PubMed ID: 20633603 doi:10.1016/j.neulet.2010.07.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Lee HJLim KBJung THKim DYPark KR. Changes in balancing ability of athletes with chronic ankle instability after foot orthotics application and rehabilitation exercises. Ann Rehabil Med. 2013;37(4):523533. PubMed ID: 24020033 doi:10.5535/arm.2013.37.4.523

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Willems TWitvrouw EVerstuyft JVaes PDe Clercq D. Proprioception and muscle strength in subjects with a history of ankle sprains and chronic instability. J Athl Train. 2002;37(4):487493. PubMed ID: 12937572

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Jeon HSKukulka CGBrunt DBehrman ALThompson FJ. Soleus H-reflex modulation and paired reflex depression from prone to standing and from standing to walking. Int J Neurosci. 2007;117(12):16611675. PubMed ID: 17987469 doi:10.1080/00207450601067158

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Sefton JMHicks-Little CAHubbard TJet al. Segmental spinal reflex adaptations associated with chronic ankle instability. Arch Phys Med Rehabil. 2008;89(10):19911995. PubMed ID: 18929028 doi:10.1016/j.apmr.2008.03.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Klykken LWPietrosimone BGKim KMIngersoll CDHertel J. Motor-neuron pool excitability of the lower leg muscles after acute lateral ankle sprain. J Athl Train. 2011;46(3):263269. PubMed ID: 21669095 doi:10.4085/1062-6050-46.3.263

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    McLeod MMGribble PAPietrosimone BG. Chronic ankle instability and neural excitability of the lower extremity. J Athl Train. 2015;50(8):847853. PubMed ID: 26090710 doi:10.4085/1062-6050-50.4.06

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Wikstrom EAHubbard-Turner TMcKeon PO. Understanding and treating lateral ankle sprains and their consequences: a constraints-based approach. Sports Med. 2013;43(6):385393. PubMed ID: 23580392 doi:10.1007/s40279-013-0043-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Mynark RGKoceja DM. Down training of the elderly soleus H reflex with the use of a spinally induced balance perturbation. J Appl Physiol. 2002;93(1):127133. PubMed ID: 12070195 doi:10.1152/japplphysiol.00007.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Voigt MDyhre-Poulsen PSimonsen EB. Modulation of short latency stretch reflexes during human hopping. Acta Physiol Scand. 1998;163(2):181194. PubMed ID: 9648637 doi:10.1046/j.1365-201X.1998.00351.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Sefton JMYarar CHicks-Little CABerry JWCordova ML. Six weeks of balance training improves sensorimotor function in individuals with chronic ankle instability. J Orthop Sports Phys Ther. 2011;41(2):8189. PubMed ID: 21169716 doi:10.2519/jospt.2011.3365

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Konradsen LMagnusson P. Increased inversion angle replication error in functional ankle instability. Knee Surg Sports Traumatol Arthrosc. 2000;8(4):246251. PubMed ID: 10975268 doi:10.1007/s001670000124

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Nakasa TFukuhara KAdachi NOchi M. The deficit of joint position sense in the chronic unstable ankle as measured by inversion angle replication error. Arch Orthop Trauma Surg. 2008;128(5):445449. PubMed ID: 17874250 doi:10.1007/s00402-007-0432-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Brown CNRoss SEMynark RGuskiewicz KM. Assessing functional ankle instability with joint position sense, time to stabilization, and electromyography. J Sport Rehabil. 2004;13:122134 doi:10.1123/jsr.13.2.122

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Pollock RDProvan SMartin FCNewham DJ. The effects of whole body vibration on balance, joint position sense and cutaneous sensation. Eur J Appl Physiol. 2011;111(12):30693077. PubMed ID: 21455611 doi:10.1007/s00421-011-1943-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Adelman DPamukoff DGoto SGuskiewicz KRoss SBlackburn J. Acute effects of whole body vibration on dynamic postural control and muscle activity in individuals with chronic ankle instability. Athl Train Sports Health Care. 2016;8:6369 doi:10.3928/19425864-20160204-01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Cardinale MBosco C. The use of vibration as an exercise intervention. Exerc Sport Sci Rev. 2003;31(1):37. PubMed ID: 12562163 doi:10.1097/00003677-200301000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Hopkins JTFredericks DGuyon PWet al. Whole body vibration does not potentiate the stretch reflex. Int J Sports Med. 2009;30(2):124129. PubMed ID: 18773376 doi:10.1055/s-2008-1038885

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Gross AMiller JD’sylva Jet al. Manipulation or mobilisation for neck pain. Cochrane Database Syst Rev. 2010;(1):CD004249. PubMed ID: 20091561 doi:10.1002/14651858.CD004249.pub3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Berschin GSommer BBehrens ASommer HM. Whole body vibration exercise protocol versus a standard exercise protocol after ACL reconstruction: a clinical randomized controlled trial with short term follow-up. J Sports Sci Med. 2014;13(3):580589. PubMed ID: 25177185

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Sierra-Guzman RJimenez JFRamirez CEsteban PAbian-Vicen J. Effects of synchronous whole body vibration training on a soft, unstable surface in athletes with chronic ankle instability. Int J Sports Med. 2017;38(6):447455. PubMed ID: 28486729 doi:10.1055/s-0043-102571

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 65 65 58
Full Text Views 3 3 2
PDF Downloads 2 2 1
Altmetric Badge
PubMed
Google Scholar
Cited By