Comparative Effects of Tensioning and Sliding Neural Mobilization on Static Postural Control and Lower Limb Hop Testing in Football Players

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Sliding and tensioning neural mobilization are used to restore normal function of the nervous system, but they impose different stresses on it. Particularly, sliding induces greater nerve excursion than tensioning. Conceivably, they might impact nervous system function differently. Objective: To compare the effects of tensioning neural mobilization versus sliding neural mobilization of the dominant lower limb on static postural control and hop testing. Design: Randomized, parallel and double blinded trial. Setting/Participants: Thirty-seven football players. Intervention(s): Participants were randomized into 2 groups: sliding neural mobilization (n = 18) or tensioning neural mobilization (n = 19) targeting the tibial nerve. Main Outcome Measures: Static postural sway was assessed with a force plate and functional performance with hop tests. Measurements were taken at baseline, after the intervention, and at 30-minute follow-up. Results: There was a significant effect of time for the center of pressure total displacement and velocity (P < .05), for the single-leg hop test (P < .05), the 6-m timed hop test (P < .05), and the cross-over hop test (P < .05), but no significant effect of the intervention. Conclusions: Sliding and tensioning neural mobilization improved postural control and hop testing in football players, and improvements remained 30 minutes after the intervention. Additional research examining the influence of neural mobilization on sensory motor impairments, postural control, and functional performance is needed.

The authors are with the School of Health Sciences, University of Aveiro, Aveiro, Portugal. Silva is also with the Center for Health Technology and Services Research (CINTESIS.UA), University of Aveiro, Aveiro, Portugal.

Silva (asilva@ua.pt) is corresponding author.
  • 1.

    Shacklock M. Clinical Neurodynamics: A New System of Musculoskeletal Treatment. Edinburgh, UK: Elsevier; 2005.

  • 2.

    Topp K, Boyd B. Structure and biomechanics of peripheral nerves: nerve responses to physical stresses and implications for physical therapist practice. Phys Ther. 2006;86:92109. PubMed ID: 16386065

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Kantarci F, Ustabasioglu FE, Delil S, et al. Median nerve stiffness measurement by shear wave elastography: a potential sonographic method in the diagnosis of carpal tunnel syndrome. Eur Radiol. 2014;24:434440. PubMed ID: 24220753 doi:10.1007/s00330-013-3023-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Filius A, Scheltens M, Bosch HG, et al. Multidimensional ultrasound imaging of the wrist: changes of shape and displacement of the median nerve and tendons in carpal tunnel syndrome. J Orthop Res. 2015;33:13321340. PubMed ID: 25865180 doi:10.1002/jor.22909

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    van Doesburg MH, Henderson J, Mink van der Molen AB, An KN, Amadio PC. Transverse plane tendon and median nerve motion in the carpal tunnel: ultrasound comparison of carpal tunnel syndrome patients and healthy volunteers. PLoS ONE. 2012;7:e37081. PubMed ID: 22606333 doi:10.1371/journal.pone.0037081

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Boyd B, Dilley A. Altered tibial nerve biomechanics in patients with diabetes mellitus. Muscle Nerve. 2014;50:216223. PubMed ID: 24375463 doi:10.1002/mus.24155

  • 7.

    Horment-Lara G, Cruz-Montecinos C, Núñez-Cortés R, Letelier-Horta P, Henriquez-Fuentes L. Onset and maximum values of electromyographic amplitude during prone hip extension after neurodynamic technique in patients with lumbosciatic pain: a pilot study. J Bodyw Mov Ther. 2016;20(2):316323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Butler DS. Adverse mechanical tension in the nervous system: a model for assessment and treatment. Aust J Physiother. 1989;35:227238. PubMed ID: 25025621 doi:10.1016/S0004-9514(14)60511-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Butler DS. The Sensitive Nervous System. 1st ed. Adelaide, Australia: Noigroup Publications; 2000.

  • 10.

    Coppieters MW, Butler DS. Do “sliders” slide and “tensioners” tension? An analysis of neurodynamic techniques and considerations regarding their application. Man Ther. 2008;13:213221. PubMed ID: 17398140 doi:10.1016/j.math.2006.12.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Coppieters MW, Andersen LS, Johansen R, et al. Excursion of the sciatic nerve during nerve mobilization exercises: an in vivo cross-sectional study using dynamic ultrasound imaging. J Orthop Sport Phys Ther. 2015;45:731737. PubMed ID: 26304637 doi:10.2519/jospt.2015.5743

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Ballestero-Pérez R, Plaza-Manzano G, Urraca-Gesto A, et al. Effectiveness of nerve gliding exercises on carpal tunnel syndrome: a systematic review. J Manipulative Physiol Ther. 2017;40:5059. PubMed ID: 27842937 doi:10.1016/j.jmpt.2016.10.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Neto T, Freitas SR, Marques M, Gomes L, Andrade R. Musculoskeletal science and practice effects of lower body quadrant neural mobilization in healthy and low back pain populations: a systematic review and meta-analysis. Musculoskelet Sci Pract. 2017;27:1422. PubMed ID: 28637597 doi:10.1016/j.msksp.2016.11.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Sharma S, Balthillaya G, Rao R, Mani R. Physical therapy in sport short term effectiveness of neural sliders and neural tensioners as an adjunct to static stretching of hamstrings on knee extension angle in healthy individuals: a randomized controlled trial. Phys Ther Sport. 2016;17:3037. PubMed ID: 26482098 doi:10.1016/j.ptsp.2015.03.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Beltran-alacreu H, Jiménez-sanz L, Fernández Carnero J, La Touche R. Comparison of hypoalgesic effects of neural stretching vs neural gliding: a randomized controlled trial. J Manipulative Physiol Ther. 2015;38:644652. PubMed ID: 26481666 doi:10.1016/j.jmpt.2015.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Alonso AC, Brech GC, Bourquin AM, Greve JMD. The influence of lower-limb dominance on postural balance. Sao Paulo Med J. 2011;129:410413. PubMed ID: 22249797 doi:10.1590/S1516-31802011000600007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Shigaki L, Da Silva RA, Heleno LR, Alves Araújo CG, Frisseli A, Macedo CSG. Dominant and non-dominant lower limb functional performance in soccer players. Sci Sports. 2017;32(6):13. doi:10.1016/j.scispo.2017.07.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Castellote-Caballero Y, Valenza MC, Puentedura EJ, Fernández-de-las-Peñas C, Alburquerque-Sendín F. Immediate effects of neurodynamic sliding versus muscle stretching on hamstring flexibility in subjects with short hamstring syndrome. J Sports Med. 2014;2014:127471. PubMed ID: 26464889 doi:10.1155/2014/127471

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Walsh J, Flatley M, Johnston N, Bennett K. Slump test: sensory responses in asymptomatic subjects. J Man Manip Ther. 2007;15:231238. PubMed ID: 19066672 doi:10.1179/106698107790819413

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ruhe A, Fejer R, Walker B. Does postural sway change in association with manual therapeutic interventions? A review of the literature. Chiropr Man Therap. 2013;21:9. PubMed ID: 23374610 doi:10.1186/2045-709X-21-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ponce-Gonzalez JG, Sanchis-Moysi J, Gonzalez-Henriquez JJ, Arteaga-Ortiz R, Calbet JA, Dorado C. A reliable unipedal stance test for the assessment of balance using a force platform. J Sports Med Phys Fitness. 2014;54:108117. PubMed ID: 24445552

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Daniel D, Stone M, Riehl B. A measurement of lower limb function: the one-leg hop for distance. Am J Knee Surg. 1988;1:212214.

  • 23.

    Bolgla LA, Keskula DR. Reliability of lower extremity functional performance tests. J Orthop Sports Phys Ther. 1997;26(3):138142. PubMed ID: 9276854 doi:10.2519/jospt.1997.26.3.138

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kockum B, Heijne AI. Hop performance and leg muscle power in athletes: reliability of a test battery. Phys Ther Sport. 2015;16(3):222227. PubMed ID: 25891995 doi:10.1016/j.ptsp.2014.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Munro A, Herrington L. Between-session reliability of four hop tests and the agility T-test. J Strength Cond Res. 2011;25:14701477. PubMed ID: 21116200 doi:10.1519/JSC.0b013e3181d83335

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Dilley A, Lynn B, Greening J, DeLeon N. Quantitative in vivo studies of median nerve sliding in response to wrist, elbow, shoulder and neck movements. Clin Biomech. 2003;18:899907. PubMed ID: 14580833 doi:10.1016/S0268-0033(03)00176-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Beneciuk JM, Bishop MD, George SZ. Effects of upper extremity neural mobilization on thermal pain sensitivity: a sham-controlled study in asymptomatic participants. J Orthop Sport Phys Ther. 2009;39:428438. PubMed ID: 19487826 doi:10.2519/jospt.2009.2954

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Low DC, Walsh GS, Arkesteijn M. Effectiveness of exercise interventions to improve postural control in older adults: a systematic review and meta-analyses of centre of pressure measurements. Sports Med. 2017;47:101112. PubMed ID: 27245061 doi:10.1007/s40279-016-0559-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ruhe A, Fejer R, Walker B. Center of pressure excursion as a measure of balance performance in patients with non-specific low back pain compared to healthy controls: a systematic review of the literature. Eur Spine J. 2011;20:358368. PubMed ID: 20721676 doi:10.1007/s00586-010-1543-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Li Z, Liang YY, Wang L, Sheng J, Ma SJ. Reliability and validity of center of pressure measures for balance assessment in older adults. J Phys Ther Sci. 2016;28:13641367. PubMed ID: 27190484 doi:10.1589/jpts.28.1364

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Park J, Cha J, Kim H, Asakawa Y. Immediate effects of a neurodynamic sciatic nerve sliding technique on hamstring flexibility and postural balance in healthy adults. Korean Acad Phys Ther Rehabil Sci. 2014;3:3842. doi:10.14474/ptrs.2014.3.1.38

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Nunes GS, Uhlig S, do Amaral Ribas LM, Gonçalves FB, Wageck B, de Noronha M. Influence of neural mobilization of lower limbs on the functional performance and dynamic balance in asymptomatic individuals: a cross-over randomized controlled trial. Hum Mov. 2017;18(4):1016. doi:10.1515/humo-2017-0033

    • Search Google Scholar
    • Export Citation
  • 33.

    Silva A, Manso A, Andrade R, Domingues V, Piedade M, Silva AG. Quantitative in vivo longitudinal nerve excursion and strain in response to joint movement: a systematic literature review. Clin Biomech. 2014;29:839847. PubMed ID: 25168082 doi:10.1016/j.clinbiomech.2014.07.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Behm DG, Blazevich AJ, Kay AD, McHugh M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl Physiol Nutr Metab. 2016;41(1):111. PubMed ID: 26642915 doi:10.1139/apnm-2015-0235

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Lima BN, Lucareli PRG, Gomes WA, et al. The acute effects of unilateral ankle plantar flexors static-stretching on postural sway and gastrocnemius muscle activity during single-leg balance tasks. J Sport Sci Med. 2014;13(3):564570. PubMed ID: 25177183

    • Search Google Scholar
    • Export Citation
  • 36.

    Sharma S, Balthillaya G, Rao R, Mani R. Short term effectiveness of neural sliders and neural tensioners as an adjunct to static stretching of hamstrings on knee extension angle in healthy individuals: a randomized controlled trial. Phys Ther Sport. 2016;17:3037. PubMed ID: 26482098 doi:10.1016/j.ptsp.2015.03.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Sharma S, Cleland J. Effect of tensioner neural mobilization on the flexibility of contralateral lower extremity. Man Ther. 2016;25:e118. doi:10.1016/j.math.2016.05.214

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Villafañe JH, Bishop MD, Fernández-de-las-Peñas C, Langford D. Radial nerve mobilisation had bilateral sensory effects in people with thumb carpometacarpal osteoarthritis: a randomised trial. J Physiother. 2013;59:2530. PubMed ID: 23419912 doi:10.1016/S1836-9553(13)70143-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 431 430 65
Full Text Views 14 14 1
PDF Downloads 9 9 1