Static Stretching Intensity Does Not Influence Acute Range of Motion, Passive Torque, and Muscle Architecture

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Although stretching exercises are commonly used in clinical and athletic practice, there is a lack of evidence regarding the methodological variables that guide the prescription of stretching programs, such as intensity. Objective: To investigate the acute effects of different stretching intensities on the range of motion (ROM), passive torque, and muscle architecture. Design: Two-group pretest–posttest design. Setting: Laboratory. Participants: Twenty untrained men were allocated into the low- or high-intensity group. Main Outcome Measures: Subjects were evaluated for initial (ROMinitial) and maximum (ROMmax) discomfort angle, stiffness, viscoelastic stress relaxation, muscle fascicle length, and pennation angle. Results: The ROM assessments showed significant changes, in both groups, in the preintervention and postintervention measures both for the ROMinitial (P < .01) and ROMmax angle (P = .02). There were no significant differences for stiffness and viscoelastic stress relaxation variables. The pennation angle and muscle fascicle length were different between the groups, but there was no significant interaction. Conclusion: Performing stretching exercises at high or low intensity acutely promotes similar gains in flexibility, that is, there are short-term/immediate gains in ROM but does not modify passive torque and muscle architecture.

Santos is with the School of Physical Education, University of Pernambuco, Recife, Brazil. Beltrão and Pirauá are with the Department of Physical Education, Federal Rural University of Pernambuco, Recife, Brazil. Durigan is with the Graduate Program of Rehabilitation Sciences, University of Brasilia, Brasilia, Brazil. Behm is with the School of Human Kinetics and Recreation, Memorial University of Newfoundland. St John’s, Newfoundland, Canada. de Araújo is with the Department of Physical Therapy, University of Pernambuco, Petrolina, Brazil.

de Araújo (rodrigo.cappato@upe.br) is corresponding author.
  • 1.

    Decoster LC, Scanlon RL, Horn KD, Cleland J. Standing and supine hamstring stretching are equally effective. J Athl Train. 2004;39:330334. PubMed ID: 15592605

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Gordon R, Bloxham S. A systematic review of the effects of exercise and physical activity on non-specific chronic low back pain. Healthcare. 2016;4:22. PubMed ID: 27417610 doi:10.3390/healthcare4020022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Page P. Current concepts in muscle stretching for exercise and rehabilitation. Int J Sports Phys Ther. 2012;7:109119. PubMed ID: 22319684

  • 4.

    Behm DG, Blazevich AJ, Kay AD, McHugh M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl Physiol Nutr Metab. 2016;41:111. PubMed ID: 26642915 doi:10.1139/apnm-2015-0235

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Young W, Elias G, Power J. Effects of static stretching volume and intensity on plantar flexor explosive force production and range of motion. J Sports Med Phys Fitness. 2006;46:403411. PubMed ID: 16998444

    • Search Google Scholar
    • Export Citation
  • 6.

    Apostolopoulos N, Metsios GS, Flouris AD, Koutedakis Y, Wyon MA. The relevance of stretch intensity and position—a systematic review. Front Psychol. 2015;18:1128. PubMed ID: 26347668 doi:10.3389/fpsyg.2015.01128

    • Search Google Scholar
    • Export Citation
  • 7.

    Behm DG, Kibele A. Effects of differing intensities of static stretching on jump performance. Eur J Appl Physiol. 2007;101:587594. PubMed ID: 17674024 doi:10.1007/s00421-007-0533-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kataura S, Suzuki S, Matsuo S, et al. Acute effects of the different intensity of static stretching on flexibility and isometric muscle force. J Strength Cond Res. 2017;31:34033410. PubMed ID: 27984497 doi:10.1519/JSC.0000000000001752

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Freitas SR, Vilarinho D, Vaz JR, Bruno PM, Costa PB, Mil-Homens P. Responses to static stretching are dependent on stretch intensity and duration. Clin Physiol Funct Imaging. 2015;35:478484. PubMed ID: 25164268 doi:10.1111/cpf.12186

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Freitas S, Vaz J, Bruno P, Andrade R, Mil-Homens P. Stretching effects: high-intensity & moderate-duration vs. low-intensity & long-duration. Int J Sports Med. 2016;37:239244. PubMed ID: 26701828

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Weppler CH, Magnusson SP. Increasing muscle extensibility: a matter of increasing length or modifying sensation? Phys Ther. 2010;90:438449. PubMed ID: 20075147 doi:10.2522/ptj.20090012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Abellaneda S, Guissard N, Duchateau J. The relative lengthening of the myotendinous structures in the medial gastrocnemius during passive stretching differs among individuals. J Appl Physiol. 2009;106:169177. doi:10.1152/japplphysiol.90577.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    e Lima KM, Carneiro SP, Alves DDS, Peixinho CC, de Oliveira LF. Assessment of muscle architecture of the biceps femoris and vastus lateralis by ultrasound after a chronic stretching program. Clin J Sport Med. 2015;25:5560. doi:10.1097/JSM.0000000000000069

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Wyon M, Felton L, Galloway SM. A comparison of two stretching modalities on lower-limb range of motion measurements in recreational dancers. J Strength Cond Res. 2009;23:21442148. PubMed ID: 19855344 doi:10.1519/JSC.0b013e3181b3e198

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Wyon MA, Smith A, Koutedakis Y. A comparison of strength and stretch interventions on active and passive ranges of movement in dancers: a randomized controlled trial. J Strength Cond Res. 2013;27:30533059. PubMed ID: 23439346 doi:10.1519/JSC.0b013e31828a4842

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Beltrão NB, Ritti-Dias RM, Pitangui ACR, De Araújo RC. Correlation between acute and short-term changes in flexibility using two stretching techniques. Int J Sports Med. 2014;35:11511154. doi:10.1055/s-0034-1382018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ferreira-Valente MA, Pais-Ribeiro JL, Jensen MP. Validity of four pain intensity rating scales. Pain. 2011;152:23992404. PubMed ID: 21856077 doi:10.1016/j.pain.2011.07.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ayala F, de Baranda Andujar PS. Effect of 3 different active stretch durations on hip flexion range of motion. J Strength Cond Res. 2010;24:430436. PubMed ID: 20072058 doi:10.1519/JSC.0b013e3181c0674f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cabido CE, Bergamini JC, Andrade AG, Lima FV, Menzel HJ, Chagas MH. Acute effect of constant torque and angle stretching on range of motion, muscle passive properties, and stretch discomfort perception. J Strength Cond Res. 2014;28:10501057. PubMed ID: 24077374 doi:10.1519/JSC.0000000000000241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Beltrão NB, Santos CX, de Oliveira VMA, Pirauá ALT, Pitangui ACR, de Araújo RC. Test–retest reliability of the range of motion and stiffness based on discomfort perception. Isokinet Exerc Sci. 2017;25:187192. doi:10.3233/IES-169162

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Aquino CFD, Gonçalves GGP, Fonseca STD, Mancini MC. Analysis of the relation between flexibility and passive stiffness of the hamstrings. Rev Bras Med Esporte. 2006;12:195200. doi:10.1590/S1517-86922006000400006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Magnusson SP, Simonsen E, Aagaard P, Sørensen H, Kjaer M. A mechanism for altered flexibility in human skeletal muscle. J Physiol. 1996;497:291298. PubMed ID: 8951730 doi:10.1113/jphysiol.1996.sp021768

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Sobolewski EJ, Ryan ED, Thompson BJ, McHugh MP, Conchola EC. The influence of age on the viscoelastic stretch response. J Strength Cond Res. 2014;28:11061112. PubMed ID: 24276306 doi:10.1519/JSC.0000000000000326

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris architecture and strength in athletes with a previous anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2016;48:337345. doi:10.1249/MSS.0000000000000783

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1998.

  • 26.

    Behm DG, Chaouachi A. A review of the acute effects of static and dynamic stretching on performance. Eur J Appl Physiol. 2011;111:26332651. PubMed ID: 21373870 doi:10.1007/s00421-011-1879-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Kay AD, Blazevich AJ. Effect of acute static stretch on maximal muscle performance: a systematic review. Med Sci Sports Exerc. 2012;44:154164. PubMed ID: 21659901 doi:10.1249/MSS.0b013e318225cb27

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Magnusson SP, Simonsen EB, Aagaard P, Boesen J, Johannsen F, Kjaer M. Determinants of musculoskeletal flexibility: viscoelastic properties, cross-sectional area, EMG and stretch tolerance. Scand J Med Sci Sports. 1997;7:195202. PubMed ID: 9241023 doi:10.1111/j.1600-0838.1997.tb00139.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Duong B, Low M, Moseley AM, Lee RY, Herbert RD. Time course of stress relaxation and recovery in human ankles. Clin Biomech. 2001;16:601607. doi:10.1016/S0268-0033(01)00043-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Ryan ED, Beck TW, Herda TJ, et al. The time course of musculotendinous stiffness responses following different durations of passive stretching. J Orthop Sports Phys Ther. 2008;38:632639. PubMed ID: 18827325 doi:10.2519/jospt.2008.2843

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Fukunaga T, Ichinose Y, Ito M, Kawakami Y, Fukashiro S. Determination of fascicle length and pennation in a contracting human muscle in vivo. J Appl Physiol. 1997;82:354358. PubMed ID: 9029238 doi:10.1152/jappl.1997.82.1.354

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Magnusson SP, Narici MV, Maganaris CN, Kjaer M. Human tendon behaviour and adaptation, in vivo. J Physiol. 2008;586:7181. PubMed ID: 17855761 doi:10.1113/jphysiol.2007.139105

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Blazevich AJ, Cannavan D, Waugh CM, Fath F, Miller SC, Kay AD. Neuromuscular factors influencing the maximum stretch limit of the human plantar flexors. J Appl Physiol. 2012;113:14461455. PubMed ID: 22923509 doi:10.1152/japplphysiol.00882.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 405 405 70
Full Text Views 33 33 2
PDF Downloads 17 17 1