A Study on Trunk Muscle Activation of 2 Deep Water Running Styles (High-Knee and Cross-Country Style) and Land Walking

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Deep water running (DWR) is an aquatic aerobic exercise which involves running in water without the feet touching the bottom of the pool, and it may involve different activation of trunk muscles compared with running or walking on land. This form of exercise is gradually being adopted as a form of therapeutic exercise for people with low back pain. It is proposed that different types of running or walking in water may be a more comfortable form of training for the trunk and abdominal muscles compared with exercising on dry land. Objectives: This study aimed to examine the trunk muscle activation in DWR in 2 different styles—high knee style and cross-country style, and these were compared with walking on land. Participants: Eleven healthy individuals (2 females and 9 males, mean age = 24 [4.6]) were recruited for this study. Outcome Measures: Surface electromyography was used to examine the activities of the right transversus abdominis, rectus abdominis, lumbar multifidus, and lumbar erector spinae muscles in 5 conditions: static standing on land and in water, running in deep water with high knee and cross-country styles, and finally walking on a treadmill. Results: The percentage of maximal voluntary contraction of the transversus abdominis was significantly higher for both running styles in DWR, compared with that of static standing in water. Comparing directly the 2 styles, muscle activity was higher with a high knee action compared to without. The activation of transversus abdominis during high-knee DWR was comparable with that during treadmill walking and this may have clinical implications. Conclusion: The results of this study confirmed that running in deep water with a high knee action activated trunk muscles differently compared with standing or walking on land.

The authors are with the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong.

So (billy.so@polyu.edu.hk) is corresponding author.
  • 1.

    Geytenbeek J. Evidence for effective hydrotherapy. Physiother. 2002;88(9):514–529. doi:10.1016/S0031-9406(05)60134-4

  • 2.

    Chu KS, Rhodes EC. Physiological and cardiovascular changes associated with deep water running in the young. Sports Med. 2001;31(1):33–46. PubMed ID: 11219500 doi:10.2165/00007256-200131010-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Killgore GL. Deep-water running: a practical review of the literature with an emphasis on biomechanics. Phys Sportsmed. 2012;40(1):116–126. PubMed ID: 22508258 doi:10.3810/psm.2012.02.1958

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Masumoto K, Delion D, Mercer JA. Insight into muscle activity during deep water running. Med Sci Sports Exerc. 2009;41(10):1958–1964. PubMed ID: 19727015 doi:10.1249/MSS.0b013e3181a615ad

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Masumoto K, Applequist BC, Mercer JA. Muscle activity during different styles of deep water running and comparison to treadmill running at matched stride frequency. Gait Posture. 2013;37(4):558–563. PubMed ID: 23195856 doi:10.1016/j.gaitpost.2012.09.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kilding AE, Scott MA, Mullineaux DR. A kinematic comparison of deep water running and overground running in endurance runners. J Strength Cond Res. 2007;21(2):476. PubMed ID: 17530939

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gallo RA, Plakke M, Silvis ML. Common leg injuries of long-distance runners: anatomical and biomechanical approach. Sports Health. 2012;4(6):485–495. PubMed ID: 24179587 doi:10.1177/1941738112445871

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kaneda K, Sato D, Wakabayashi H, Nomura T. EMG activity of hip and trunk muscles during deep-water running. J Electromyo Kinesiol. 2009;19(6):1064–1070. doi:10.1016/j.jelekin.2008.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Winter DA. Human balance and posture control during standing and walking. Gait Posture. 1995;3(4):193–214. doi:10.1016/0966-6362(96)82849-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Reilly T, Dowzer CN, Cable NT. The physiology of deep-water running. J Sports Sci. 2003;21(12):959–972. PubMed ID: 14748454 doi:10.1080/02640410310001641368

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Masumoto K, Bailey JP, Mercer JA. Determining if muscle activity is related to preferred stride frequency during running in the water and on land. Euro J Appl Physiol. 2015;115(12):2691–2700. doi:10.1007/s00421-015-3234-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Bressel E, Dolny DG, Gibbons M. Trunk muscle activity during exercises performed on land and in water. Med Sci Sports Exerc. 2011;43(10):1927–1932. PubMed ID: 21448084 doi:10.1249/MSS.0b013e318219dae7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Imai A, Kaneoka K, Okubo Y, et al. Trunk muscle activity during lumbar stabilization exercises on both a stable and unstable surface. J Orthop Sports Phys Ther. 2010;40(6):369–375. PubMed ID: 20511695 doi:10.2519/jospt.2010.3211

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McGill S, Juker D, Kropf P. Appropriately placed surface EMG electrodes reflect deep muscle activity (psoas, quadratus lumborum, abdominal wall) in the lumbar spine. J Biomechan. 1996;29(11):1503–1507. doi:10.1016/0021-9290(96)84547-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Larivière C, Arsenault AB, Gravel D, Gagnon D, Loisel P. Surface electromyography assessment of back muscle intrinsic properties. J Electromyo Kinesiol. 2003;13(4):305–318. doi:10.1016/S1050-6411(03)00039-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Okubo Y, Kaneoka K, Imai A, et al. Comparison of the activities of the deep trunk muscles measured using intramuscular and surface electromyography. J Mechanics Med Biol. 2010;10(04):611–620. doi:10.1142/S0219519410003599

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assessment. 1994;6(4):284–290. doi:10.1037/1040-3590.6.4.284

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Swinnen E, Baeyens JP, Meeusen R, Kerckhofs E. Methodology of electromyographic analysis of the trunk muscles during walking in healthy subjects: a literature review. J Electromyo Kinesiol. 2012;22(1):1–12. doi:10.1016/j.jelekin.2011.04.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Bergmark A. Stability of the lumbar spine: a study in mechanical engineering. Acta Orthop Scand Suppl. 1989;60(suppl 230):1–54. doi:10.3109/17453678909154177

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Mercer JA, Applequist BC, Masumoto K. Muscle activity during running with different body-weight-support mechanisms: aquatic environment versus body-weight-support treadmill. J Sport Rehabil. 2014;23(4):300–306. PubMed ID: 23921368 doi:10.1123/JSR.2013-0032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hodges PW, Richardson CA. Contraction of the abdominal muscles associated with movement of the lower limb. Phys Ther. 1997;77(2):132–142. PubMed ID: 9037214 doi:10.1093/ptj/77.2.132

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hodges P. Transversus abdominis: a different view of the elephant. Br J Sports Med. 2007;42(12):941–944. doi:10.1136/bjsm.2008.051037

  • 23.

    Anders C, Wagner H, Puta C, Grassme R, Petrovitch A, Scholle H. Trunk muscle activation patterns during walking at different speeds. J Electromyo Kinesiol. 2007;17(2):245–252. doi:10.1016/j.jelekin.2006.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Thorstensson A, Carlson H, Zomlefer MR, Nilsson J. Lumbar back muscle activity in relation to trunk movements during locomotion in man. Acta Physiol Scand. 1982;116(1):13–20. PubMed ID: 7158389 doi:10.1111/j.1748-1716.1982.tb10593.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Saunders SW, Schache A, Rath D, Hodges PW. Changes in three dimensional lumbo-pelvic kinematics and trunk muscle activity with speed and mode of locomotion. Clin Biomechan. 2005;20(8):784–793. doi:10.1016/j.clinbiomech.2005.04.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Killgore GL, Wilcox AR, Caster BL, Wood TM. A lower-extremities kinematic comparison of deep-water running styles and treadmill running. J Strength Cond Res. 2006;20(4):919. PubMed ID: 17149985

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 12 12 10
Full Text Views 77 77 14
PDF Downloads 38 38 8