Effectiveness of Mechanical Treatment for Plantar Fasciitis: A Systematic Review

Click name to view affiliation

Dorianne Schuitema
Search for other papers by Dorianne Schuitema in
Current site
Google Scholar
PubMed
Close
,
Christian Greve
Search for other papers by Christian Greve in
Current site
Google Scholar
PubMed
Close
,
Klaas Postema
Search for other papers by Klaas Postema in
Current site
Google Scholar
PubMed
Close
,
Rienk Dekker
Search for other papers by Rienk Dekker in
Current site
Google Scholar
PubMed
Close
, and
Juha M. Hijmans
Search for other papers by Juha M. Hijmans in
Current site
Google Scholar
PubMed
Close
Open access

Context: Plantar fasciitis is one of the most common foot injuries. Several mechanical treatment options, including shoe inserts, ankle-foot orthoses, tape, and shoes are used to relieve the symptoms of plantar fasciitis. Objectives: To investigate the effectiveness of mechanical treatment in the management of plantar fasciitis. Evidence Acquisition: The review was reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. A systematic search was performed in PubMed, CINAHL, Embase, and Cochrane up to March 8, 2018. Two independent reviewers screened eligible articles and assessed risk of bias using the Cochrane Collaboration’s risk of bias tool. Evidence Synthesis: A total of 43 articles were included in the study, evaluating 2837 patients. Comparisons were made between no treatment and treatment with insoles, tape, ankle-foot orthoses including night splints and shoes. Tape, ankle-foot orthoses, and shoes were also compared with insoles. Follow-up ranged from 3 to 5 days to 12 months. Cointerventions were present in 26 studies. Conclusions: Mechanical treatment can be beneficial in relieving symptoms related to plantar fasciitis. Contoured full-length insoles are more effective in relieving symptoms related to plantar fasciitis than heel cups. Combining night splints or rocker shoes with insoles enhances improvement in pain relief and function compared with rocker shoes, night splints, or insoles alone. Taping is an effective short-term treatment. Future studies should aim to improve methodological quality using blinding, allocation concealment, avoid cointerventions, and use biomechanical measures of treatment effects.

Plantar fasciitis is one of the most common types of foot injuries.13 Approximately 10% of the general population will experience complaints associated with plantar fasciitis once in their life.4 Patients suffering from plantar fasciitis experience pain along the proximal plantar fascia and around its attachment in the area of the calcaneal tuberosity. Pain aggravates with load, as in walking and running and when first standing after a period of inactivity, such as getting out of bed in the morning.5

The exact pathology of plantar fasciitis is still unknown, but a combination of high mechanical stress and repetitive microtrauma is the one leading cause of the pathology.5 Histological findings suggest the underlying process of plantar fasciitis to be more degenerative rather than inflammatory. Therefore, the term “fasciitis” might be a misnomer and could better be replaced by “fasciosis.”6 Risk factors associated with plantar fasciitis are a high body mass index,7,8 prolonged weight-bearing, and a limited ankle range of motion.9 In 45% to 85% of the patients suffering from plantar fasciitis, calcaneal spur is also present.10

Several nonsurgical treatment methods are available to relieve symptoms associated with plantar fasciitis. These include stretching, manual therapy, dry needling, shockwave therapy, physical agents (electrotherapy, low-level laser therapy, phonophoresis, and ultrasound), lifestyle counseling, anti-inflammatory injections, and mechanical treatments such as taping, rocker shoes, and (ankle-)foot orthoses ([A]FOs) including night splints.11

Mechanical treatments are promising due to the low risk of complications, good accessibility, and high capacity to relieve the mechanical load on the plantar fascia during functional tasks of daily life. The effectiveness of mechanical treatment on plantar fasciitis has previously been investigated.4,1218 However, these studies were limited to specific mechanical devices or compared mechanical devices to nonmechanical interventions such as stretching and nonsteroidal anti-inflammatory drugs. An overview of the effectiveness of all mechanical treatment options is still missing. Therefore, the aim of this study is to provide an overview of the effectiveness of all commonly used mechanical treatment options for plantar fasciitis: taping, rocker shoes, and (A)FOs including night splints.

Methods

This review was conducted and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement.

Literature Search

A systematic search was performed in 4 electronic databases (MEDLINE, Embase, CINAHL, and Cochrane) using a combination of Medical Subject Headings (MeSH) terms and free-text words. The exact search strategy is described in Appendix. Keywords used were plantar fasciitis, heel spur, calcaneal spur combined via a Boolean AND operator with orthotic devices, shoes, splints, rocker, soles, and tape. The search was performed up to March 26, 2017, and updated on March 8, 2018. Besides the database search, reference lists of all included articles were checked on additional relevant studies.

Included studies were controlled trials, focusing on treating plantar fasciitis with one or more mechanical treatment methods. In case of biomechanical or anatomical outcome measures, no control group was required. Other inclusion criteria were a minimum number of 5 participants, adult aged (≥18 y), and only participants without a disease that could interfere with the symptoms of plantar fasciitis. Only primary research available in full text and written in English, Dutch, or German was included.

After removal of duplicates, 2 authors independently assessed titles, abstracts, and full text against the inclusion criteria. During title selection, articles were selected when at least one of the authors judged the paper to be included. Disagreements between the reviewers during abstract and full-text selection were resolved by discussion between the authors. If still no agreement was reached, a third author would decide.

Risk of Bias

Two authors independently assessed risk of bias using the Cochrane Collaboration’s risk of bias tool.19 Risk of bias addressed in this tool include the following domains: (1) random sequence generation, (2) allocation concealment, (3) blinding of participants, (4) blinding of personnel, (5) blinding of outcome assessment, (6) incomplete outcome data, and (7) selective reporting. Other risks of bias not covered in these domains are (8) similar groups at baseline or corrected for dissimilarities; (9) cointerventions avoided of similar between groups, interventions, or measurements; (10) similar timing of outcome assessment in all groups; and (11) no conflicts of interest. All domains were judged “low risk of bias,” “high risk of bias,” or “unclear.” In the end, studies were considered of “high risk of bias” if one or more domains were judged “high risk.” If none of the domains was of “high risk” and one or more domains were “unclear,” the study was assessed “unclear.” If all domains were of “low risk,” the overall judgment was “low risk.” Disagreements between the authors were resolved in a consensus meeting. If no consensus could be reached, a third author would decide.

Results

Database Search

The database search yielded 937 articles after removal of 598 duplicates. Title screening resulted in the exclusion of 489 articles, abstract screening resulted in the exclusion of 391 articles, and in the full-text screening, another 18 articles were excluded. From those 18 articles, 2 were excluded because they were not available in full text and 16 because they did not fulfill the other inclusion criteria. Checking references of the 39 remaining articles yielded no other articles. An updated search resulted another 4 articles so in the end, 43 studies were included in the review (Figure 1).

Figure 1
Figure 1

—Flowdiagram of the database search.

Citation: Journal of Sport Rehabilitation 29, 5; 10.1123/jsr.2019-0036

Risk of Bias

Risk of bias assessment (Figure 2) revealed that 33 studies2052 had one or more domains assessed as high risk of bias. For 10 studies,5362 unclear was highest, and none of the studies scored only low risk of bias (Appendix). Greatest potential sources of high risk were blinding of personnel (37%), blinding of outcome assessors (26%), and cointerventions (30%).

Figure 2
Figure 2

—Risk of bias assessment.

Citation: Journal of Sport Rehabilitation 29, 5; 10.1123/jsr.2019-0036

Study Selection

The 43 selected studies evaluated interventions in a total of 2837 participants. Study characteristics are shown in Table 1. All participants were diagnosed with plantar fasciitis, except for one study including patients and a control group of healthy participants.61 In almost all studies, pain scores were used as criteria for patients to participate.2023,2531,3335,3739,4246,4856,5962 Four studies also evaluated plantar fascia thickness via radiologic evaluation.27,44,45,48 Patients who had undergone foot surgery or previous treatment for plantar fasciitis were excluded in 27 out of 43 studies.21,23,2531,3335,38,42,43,46,48,5156,5962

Table 1

Study Characteristics

Author (year)DesignNumber (M/F)Age, mean (SD) [range]InterventionCointervention part of participants (n)Cointervention all participantsFollow-up
Abd El Salam and Abd Elhafz (2011)53RCT(1) 15 (12/3)

(2) 15 (11/4)
(1) 52.933 (4.542)

(2) 52.8 (4.003)
(1) Low-dye taping

(2) Prefabricated insole
UnknownUltrasound and stretching3 wk
Al-Bluwi et al (2011)20RCT(1) 117

(2) 80

(3) 48
(1) 45.16 (5.1)

(2) 41.3 (2.6)

(3) 43.8 (3.5)
(1) Foot brace

(2) Physiotherapy

(3) Physiotherapy + local steroid injection
NSAIDs24 wk
Alghadir (2006)21RCT(1) 30 (11/19)

(2) 30 (5/25)

(3) 30 (7/23)
(1) 50.23 (11.37)

(2) 48.24 (12.73)

(3) 49.07 (10.13)
(1) Dorsiflexion night splint

(2) Prefabricated insole

(3) Dorsiflexion night splint + prefabricated insole
6 wk
Attard and Singh (2012)32CT15 (4/11)51.7 [26–68](1) Posterior night splint

(2) Anterior night splint
UnknownUnknown6 and 12 wk
Baldassin et al (2009)43RCT142 (35/107)

(1) 72

(2) 70
(1) 47.5 (11.5)

(2) 47.2 (12.4)
(1) Prefabricated insole

(2) Customized insole
Achilles’ tendon stretching (40%) and anti-inflammatory treatment or ice (28%)4 and 8 wk
Batt et al (1996)47RCT32 (11/21)

(1) 16

(2) 17
45.7 [20–70](1) Posterior night splint

(2) No night splint
UnknownHeel cup; anti-inflammatory medication; gastrocnemius and soleus muscle stretching4, 10, and 12 wk
Bonanno et al (2004)54CO36 (24/12)71 (6.9) [65–92](1) Shoe

(2) Shoe + silicon heel cup

(3) Shoe + soft foam heel pad

(4) Shoe + heel lift

(5) Shoe + prefabricated insole
UnknownSingle visit
Chia et al (2009)48CO30 (16/14)M: 53.31 (6.24)

F: 32.43 (7.86)
(1) No insole

(2) Flat insole

(3) Bone spur heel pads

(4) Prefabricated foam insole

(5) Customized insole
UnknownSingle visit
Dimou et al (2004)49RCT(1) 10 (6/4)

(2) 10 (7/3)
(1) 44.1

(2) 40.6
(1) Chiropractic adjustments + Achilles tendon stretching

(2) Customized insole
UnknownUnknown1, 15, and 29 d and 2 mo
Ferguson et al (1991)50CT(1) 20

(2) 20
Unknown(1) Homogenous thermoplastic orthosis

(2) Heterogeneous thermoplastic orthosis
Icing (7/10), taping (10/9), stretching (6/3), ultrasound (?/?), medication (2/0), cortisone shots (2/4), heel cups/pads (2/0), new shoes (2/5), physical therapy (4/7), and back adjustments (1/0)3 and 6 mo
Fong et al (2012)51CO15 (3/12)50.6 (5.3)(1) Barefoot;

(2) Normal shoe + flat insole

(3) Normal shoe + customized insole

(4) Rocker shoe + flat insole

(5) Rocker shoe + customized insole
UnknownUnknownSingle visit
Hyland et al (2006)52RCT(1) 10 (8/2)

(2) 11 (5/6)

(3) 10 (5/5)

(4) 10 (3/7)
(1) 34.1 (5.9)

(2) 45.5 (12.0)

(3) 40.4 (9.4)

(4) 37.6 (10.1)
(1) Stretching

(2) Calcaneal taping

(3) Sham taping

(4) No treatment
UnknownUnknown1 wk
Kavros (2005)22RCT50 (41/9)

(1) 25

(2) 25
Unknown(1) Prefabricated insole

(2) Aircast AirHeel
UnknownAchilles-/plantar fascia stretching12 wk
Landorf et al (2005)23CT105 (35/70)

(1) 65

(2) 35
(1) 47.2 (11.1)

(2) 45.6 (10.9)
(1) Low-dye taping

(2) No treatment
Calf muscle stretches and advise about appropriate footwear3–5 d
Landorf et al (2006)24RCT135 (46/89)

(1) 45

(2) 44

(3) 46
(1) 48.5 (9.6)

(2) 47.3 (11.6)

(3) 49.2 (12.0)
(1) Sham insole

(2) Prefabricated insole

(3) Customized insole
3 and 12 mo
Lee et al (2012)25CT28 (2/26)

(1) 14

(2) 14
(1) 43 (5) [34–53]

(2) 45 (8) [30–54]
(1) Insole

(2) Insole + dorsiflexion night splint
2 and 8 wk
Lynch et al (1998)26RCT(1) 31

(2) 26

(3) 28
49 [19–81](1) Anti-inflammatory injection

(2) Prefabricated viscoelastic heel cup

(3) Low-dye taping (<4 wk) + customized insole (>4 wk)
(2) Analgesics2, 4, and 6 wk and 3 mo
Malkoc et al (2015)27RCT(1) 35 (9/29)

(2) 40 (17/23)
(1) 45.5 (10.3) [26–63]

(2) 50.3 (12.5) [28–70]
(1) Prefabricated insole

(2) Prefabricated heel cup
NSAIDsStretching(1) 9.6 (1.8) [8–14] mo

(2) 9.9 (1.3) [8–12] mo
Martin et al (2001)28RCT(1) 85 (24/61)

(2) 85 (20/65)

(3) 85 (16/69)
(1) 47 (13)

(2) 48 (11)

(3) 47 (11)
(1) Customized insole

(2) Prefabricated insole

(3) Posterior night splint
(1) and (2) low-dye taping in first 2 wk2, 6, and 12 wks
Mehta et al (2017)55RCT(1) 15 (3/12)

(2) 15 (5/11)
(1) [20–45](1) Kinesiotaping

(2) Mulligan taping + physiotherapy
UnknownUnknown6 d
Oliveira et al (2015)29RCT(1) 37 (1/36)

(2) 37 (7/30)
(1) 48 (10.1)

(2) 53 (10.8)
(1) Customized total contact insole

(2) Flat insole
NSAIDs45, 90, and 180 d
Ordahan et al (2017)56RCT(1) 33 (7/26)

(2) 37 (9/28)
(1) 47.7 (9.8)

(2) 47.8 (12.4)
(1) Kinesio taping

(2) Extracorporeal shockwave therapy
UnknownUnknown5 wk
Park et al (2015)57RCT(1) 15

(2) 15
(1) 38.6 (4.1)

(2) 37.4 (4.5)
(1) Low-dye taping

(2) No taping
UnknownTENS; infrared therapy6 wk
Park et al (2015)58CT(1) 15

(2) 15
(1) 35.4 (5.03)

(2) 35.9 (4.0)
(1) Low-dye taping

(2) No taping
UnknownTENS; infrared therapy6 wk
Pfeffer et al (1999)30RCT(1) 39 (11/28)

(2) 42 (17/25)

(3) 42 (13/29)

(4) 43 (13/30)

(5) 34 (11/23)
(1) 47 [25–81]a

(2) 49.5 [30–75]a

(3) 48 [26–76]a

(4) 44 [27–69]a

(5) 48.5 [23–69]a
(1) No insole

(2) Silicone heel pad

(3) Felt insole

(4) Rubber heel cup

(5) Customized neutral orthosis
Achilles-/plantar fascia stretching8 wk
Powell et al (1998)31CO(1) 22 (4/18)

(2) 15 (4/11)
48 [22–72]

(1) 46.7 (2.8) [22–69]

(2) 49.5 (2.5) [33–72]
(1) Posterior night splint

(2) No night splint
30 and 60 d and 6 mo
Probe et al (1999)33RCT116 (35/81)46 (11)(1) Posterior night splint

(2) No night splint
UnknownAnkle dorsiflexion exercises; NSAIDs; shoes with supportive arches and cushioned heels recommended4, 8, and 12 wk
Radford et al (2006)34RCT92 (37/55)

(1) 46

(2) 46
(1) 51.3 (13.5)

(2) 49.2 (13.8)
(1) Low-dye taping

(2) Sham taping
Sham ultrasound1 wk
Ring and Otter (2014)35CH70 (27/43)

(1) 35

(2) 35
48 [27–63](1) Prefabricated insole

(2) Customized insole
8 wk
Rome et al (2004)59RCT(1) 22

(2) 26

59.9 (13.5) [33.1–87.9]

(1) 58.3 (12.6)

(2) 61.2 (14.4)
(1) Accommodative insole

(2) Functional insole
UnknownStretching4 and 8 wk
Roos et al (2006)36RCT43 (9/34)

(1) 13

(2) 15

(3) 15
46 [22–63](1) Customized insole

(2) Anterior night splint

(3) Customized insole + anterior night splint
(1) Homeopathy (1)

(2) Insoles (2)

(3) Anti-inflammatory gel (1)
6, 12, 26, and 52 wk
Ryan et al (2009)37RCT(1) 9

(2) 12
(1) 42 (7)

(2) 38 (12)
(1) Nike Free 5.0

(2) Conventional running shoe
Stretching/balance exercises6 and 12 wk and 6 mos
Sharma and Loudon (2010)38RCT(1) 6 (0/6)

(2) 8 (1/7)
(1) 44.2 (11.3) [26–58]

(2) 40.3 (7.0) [34–50]
(1) Posterior AFO

(2) Stretching + plantar fascia massage
Anti-inflammatory medications; Previous worn orthoticsFoot arch support insoles4, 8, and 12 wk
Sheridan et al (2010)39RCT60 (14/46)

(1) 30

(2) 30
49.5 (18.2)(1) Customized dorsiflexion night splint

(2) No night splint
UnknownNSAIDs, orthotic devices, and corticosteroid injections12 wk
Tsai et al (2010)40RCT52 (19/33)

(1) 26

(2) 26
(1) 52.67 (28.75)

(2) 30.50 (13.14)
(1) Kinesiotaping

(2) No kinesiotaping
Ultrasound; TENS,2 wk
Turlik et al (1999)41RCT(1) 30 (7/23)

(2) 25 (11/14)
(1) 46

(2) 44
(1) Prefabricated heel cup

(2) Customized insole
NSAIDs (18/5); local steroid injections (7/8); ultrasound (2/0);Active stretches3 mo
Van Lunen (2011)60CO17 (5/12)M: 34.8 (15.3)

F: 36.8 (16.5)
(1) Prefabricated insole

(2) Low-dye taping
UnknownUnknownSingle visit
Van Tonder et al (2018)61RCT(A) 10 (3/7)

(B) 10 (4/6)
(A) 58 (11)

(B) 59 (11)
(1A) Low-dye taping – Patient

(1B) Low-dye taping – Control

(2A) Sham taping – Patient

(2B) Sham taping – Control

(3A) No taping – Patient

(3B) No taping – Control
UnknownUnknownSingle visit
Vicenzino et al (2015)42RCT150 (48/102)

(1) 49

(2) 50

(3) 51
(1) 52 (11)

(2) 50 (12)

(3) 50 (13 )
(1) Contoured sandal

(2) Flat flip-flop

(3) Prefabricated insole
UnknownUnknown4 and 12 wks
Walther et al (2013)44RCT(1) 10 (2/8)

(2) 10 (3/7)

(3) 10 (4/6)
(1) 51.6 (12.5)

(2) 53.8 (13.2)

(3) 53.9 (14.9)
(1) Prefabricated nonsupportive insole

(2) Prefabricated soft supportive foam insole

(3) Prefabricated foam covered rigid self-supporting insole
3 wks
Wheeler (2017)45RCT(1) 20 (5/15)

(2) 20 (7/13)
(1) 53.4 (8.9)

(2) 50.9 (11.7)
(1) Posterior night splint

(2) No night splint
UnknownStretching and balance training exercises6 wk and 3 mo
Wrobel et al (2015)46RCT(1) 26

(2) 26

(3) 25
49.61 (12.07) [23–75](1) Sham insole

(2) Customized insole

(3) Prefabricated insole
Stretching and ice massageStandardized athletic shoes1 and 3 mo
Yucel et al (2013)62RCT(1) 20 (4/16)

(2) 20 (4/16)
(1) 45.6 (9.3)

(2) 47.4 (7.9)
(1) Corticosteroid injection

(2) Prefabricated insole
(2) Analgesics1 mo

Abbreviations: AFO, ankle-foot orthosis; CH, cohort study; CO, crossover study; CT, controlled trial; NSAIDs, nonsteroidal anti-inflammatory drugs; RCT, randomized controlled trial; TENS, transcutaneous electrical nerve stimulation.

aMedian [range].

Interventions

All studies evaluated one or more mechanical interventions for plantar fasciitis. The most studied intervention was the insole. Seventeen studies24,2730,35,41,43,44,46,4851,54,59,62 compared insoles to another type of insole, no insole, or to a nonmechanical treatment method. Nine studies focused on taping,23,34,40,52,5558,61 7 studies on night splints,25,3133,39,45,47 2 studies on daytime worn AFOs,20,38 and 3 studies on shoes.37,42,51 Comparisons were also made between different types of mechanical treatment. Five studies were conducted at a single visit.48,51,54,60,61 Follow-up of the other studies ranged from 3 to 5 days to 12 months.

In some studies, participants used more treatments than just the treatment being examined. These additional treatments were applied to all participants in 20 studies20,22,23,25,27,30,33,3741,4547,53,5759 and only by part of all participants in 11 studies.2629,36,38,41,43,46,50,62

Effect of Interventions

Outcomes of the included studies are shown in Tables 2 and 3. Based on previous research, minimal clinically important differences were 9 mm for the visual analog scale, 12 for the Foot Function Index (FFI)—pain, 7 for Foot Function Index—disability, 7 for Foot Function Index—total, 14 for the Foot Health Status Questionnaire—pain, and 7 for Foot Health Status Questionnaire—function.63

Table 2

Subjective Study Outcomes

Author (year)InterventionOutcome variablesFunctionPainQoLSatisfactionTendernessWeeks to cureSignificant between-group differences
Abd El Salam and Abd Elhafz (2011)53(1) Low-dye taping

(2) Prefabricated insole
Pain (VAS)

Function (MFPDQ)
+

+
+c

+c
Function: 2 < 1

Pain: 2 < 1
Al-Bluwi et al (2011)20(1) Foot brace

(2) Physiotherapy

(3) Physiotherapy + local steroid injection
Pain (VAS, SFMPQ)+a,c

+a

+a
Pain: 1 < 3 < 2
Alghadir (2006)21(1) Dorsiflexion night splint

(2) Prefabricated insole

(3) Dorsiflexion night splint + prefabricated insole
Pain (FFI pain score); function (FFI disability score)+a

+a

+a,c
+a,c

+a

+a,c
+a

a

+a
Function: 3 < 1 & 2

Pain: 3 < 1 & 2

Tenderness: 3 > 1 & 2b
Attard and Singh (2012)32(1) Posterior night splint

(2) Anterior night splint
Pain (VAS); patient satisfaction+c

+c
22% satisfied

78% satisfied
Pain: 2 < 1
Baldassin et al (2009)43(1) Prefabricated insole

(2) Customized insole
Pain (FFI pain score); function (FFI total score)0

0
+c

+c
Function: ns

Pain: ns
Batt et al (1996)47(1) Posterior night splint

(2) No night splint
Weeks to cure+

r
Weeks to cure: 1 < 2
Dimou et al (2004)49(1) Chiropractic adjustments + Achilles tendon stretching

(2) Customized insole
Pain (NRS); function (effect on 3 activities)+

+
+

+
+

+
Function: ns

Pain: ns

Tenderness: ns
Ferguson et al (1991)50(1) Homogenous thermoplastic orthosis

(2) Heterogeneous thermoplastic orthosis
Patient satisfaction (perception of effectiveness)+a

+a
Satisfaction: ns
Fong et al (2012)51(1) Barefoot

(2) Normal shoe + flat insole

(3) Normal shoe + customized insole

(4) Rocker shoe + flat insole

(5) Rocker shoe + customized insole
Pain (VAS)r

0c

+c

+c

+c
Pain: 5 < 3 & 4 < 2 < 1
Hyland et al (2006)52(1) Stretching

(2) Calcaneal taping

(3) Sham taping

(4) No treatment
Pain (VAS) and function (PSFS)0

0

0

+c

+c

+

0
Function: ns

Pain: 2 < 1 < 4 and 2 < 3
Kavros (2005)22(1) Prefabricated insole

(2) Aircast AirHeel
Pain (FFI pain score)+c

+c
Pain: ns
Landorf et al (2005)23(1) Low-dye taping

(2) No treatment
Pain (VAS); patient satisfaction (perception of effectiveness)+a,c

a
+a

+a
Pain: 1 < 2

Satisfaction: 1 > 2b
Landorf et al (2005)24(1) Sham insole

(2) Prefabricated insole

(3) Customized insole
Pain (FHSQ pain score); function (FHSQ function score)+c

+c

+c
+c

+c

+c
Function: 2 & 3 > 1b

Pain: ns
Lee et al (2006)25(1) Insole

(2) Insole + dorsiflexion night splint
Pain (FFI pain score); function (FFI total score); patient satisfaction (comfort)0

+c
0

+c
No discomfort in both groupsFunction: 2 < 1

Pain: 2 < 1
Lynch et al (1998)26(1) Anti-inflammatory injection

(2) Prefabricated viscoelastic heel cup

(3) Low-dye taping (<4 wk) + customized insole (>4 wk)
Pain (VAS)+c

+c

+c
Pain: 3 < 2
Malkoc et al (2015)27(1) Prefabricated insole

(2) Prefabricated heel cup
Pain (VAS); function (FAAM daily activity score, sporting activity score)+

+
+c

+c
Function: ns

Pain: ns
Martin et al (2001)28(1) Customized insole

(2) Prefabricated insole

(3) Posterior night splint
Pain (VAS)+a,c

+a,c

+a,c
Pain: ns
Mehta et al (2017)55(1) Kinesio taping

(2) Mulligan taping + physiotherapy
Pain (VAS), Function (FFI)+

+c
+c

+c
Function: 2 < 1a

Pain: 2 < 1a
Oliveira et al (2015)29(1) Customized total contact insole

(2) Flat insole
Pain (VAS); function (FFI, FHSQ); QoL (SF-36); patient satisfaction (LS)+c

+c
+c

+c
+

+
+

+
Function: ns

Pain: 1 < 2

QoL: ns

Satisfaction: ns
Ordahan et al (2017)56(1) Kinesio taping

(2) Extracorporeal shockwave therapy
Pain (VAS, HTI); function (FAOS ADL); QoL (FAOS QoL)+

+
+c

+c
+

+
Function: ns

Pain: ns

QoL: ns
Park et al (2015)58(1) Low-dye taping

(2) No taping
Pain (VAS)+c

+c
Pain: 1 < 2
Pfeffer et al (1999)30(1) No insole

(2) Silicone heel pad

(3) Felt insole

(4) Rubber heel cup

(5) Customized neutral orthosis
Pain (FFI pain score)+c

+c

+c

+c

+c
Pain: ns
Powell et al (1998)31(1) Posterior night splint

(2) No night splint
Pain (scale 1–10); function (AOFAS, MCSS); patient satisfaction+

0
+c

0
73% satisfied; 27% dissatisfiedFunction: 1 > 2b

Pain: 1 < 2
Probe et al (1999)33(1) Posterior night splint

(2) No night splint
Pain (scale 0–4); function (SF-36)+

+
+

+
Function: ns

Pain: ns
Radford et al. (2006)34(1) Low-dye taping

(2) Sham taping
Pain (VAS); function (FHSQ foot function score)+c

+c
+c

+c
Function: ns

Pain: 1 < 2
Ring and Otter (2014)35(1) Prefabricated insole

(2) Customized insole
Function (MFPDQ); patient satisfaction+

+
+

+
Function: ns

Satisfaction: ns
Rome et al (2004)59(1) Accommodative insole

(2) Functional insole
Pain (FHSQ foot pain score); function: FHSQ foot function score); QoL (EQ5D)0

+c
+c

+c
0

+
Function:?

Pain:?

QoL:?
Roos et al (2006)36(1) Customized insole

(2) Anterior night splint

(3) Customized insole + anterior night splint
Pain (FAOS pain score); function (FAOS ADL score); QoL (FAOS QoL score)+

+

+
+

+

+
+

+

+
Function: ns

Pain: 1 & 3 > 2b

QoL: ns
Ryan et al (2009)37(1) Nike Free 5.0

(2) Conventional running shoe
Pain (VAS)+c

+c
Pain: ns
Sharma and Loudon (2010)38(1) Posterior AFO

(2) Stretching + plantar fascia massage
Pain (FFI pain scores); function (AOFAS)+

+
+

+
Function: ns

Pain: ns
Sheridan et al (2010)39(1) Customized dorsiflexion night splint

(2) No night splint
Pain (PFPDS)+a

0a
Pain: 1 < 2
Tsai et al (2010)40(1) Kinesio taping

(2) No kinesio taping
Pain (MPQ)+

+
Pain: 1 < 2
Turlik et al (1999)41(1) Prefabricated heel cup

(2) Customized insole
Pain (scale 0–5)?

?
?

?
Pain: 2 < 1

Satisfaction: 2 < 1
Van Lunen (2011)60(1) Prefabricated insole

(2) Low-dye taping
Pain (VAS)+c

+c
Pain: ns
Van Tonder et al (2018)61(1A) Low-dye taping (patient)

(1B) Low-dye taping (control)

(2A) Sham taping (patient)

(2B) Sham taping (control)

(3A) No taping (patient)

(3B) No taping (control)
Pain (NRS 0–10)+

?

0

?

r

?
Pain: 1A < 2A & 3A
Vicenzino et al (2015)42(1) Contoured sandal

(2) Flat flip-flop

(3) Prefabricated insole
Pain (NRS 0–10); function (LEFS)0

0

0
+a

+a

+a
Function: ns

Pain: 1 < 2
Walther et al (2013)44(1) Prefabricated nonsupportive insole

(2) Prefabricated soft supportive foam insole

(3) Prefabricated foam covered rigid self-supporting insole
Pain (VAS); patient satisfaction (comfort VAS)0

+c

+c
Single measurementPain: 2 < 1, 3 < 2 & 1

Satisfaction: 2 & 3 > 1b
Wheeler (2017)45(1) Posterior night splint

(2) No night splint
Pain (scale 0–10), Function (FFI-R total, MOXFQ)+c

+c
+c

+c
Function: ns

Pain: ns
Wrobel et al (2015)46(1) Sham insole

(2) Customized insole

(3) Prefabricated insole
Pain (VAS, FFI-R pain score); function (FFI-R, SF-36)0

0

0
+c

+c

+c
Function: ns

Pain: ns
Yucel et al (2013)62(1) Corticosteroid injection

(2) Prefabricated insole
Pain (VAS); QoL (FAOS QoL score)+

+
+c

+c
+

+
Function: 1 > 2b

Pain: 1 > 2b

QoL: ns

Abbreviations: −, negative effect;?, effect unclear; +, positive effect; 0, no effect; ADL, activities of daily living; AFO, ankle-foot orthosis; AOFAS, American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Scale; EQ5D, EuroQol 5D; FAAM, foot and ankle ability measure; FAOS, foot and ankle outcome score; FFI, Foot Function Index; FFI-R, Foot Function Index-revised; FHSQ, Foot Health Status Questionnaire; HTI, heel tenderness index; LEFS, Lower Extremity Function Scale; LS, Likert scale; MCSS, Mayo Clinical Scoring System; MFPDQ, Manchester Foot Pain and Disability Questionnaire; MOXFQ, Manchester-Oxford Foot Questionnaire; Numerical Rating Scale; MPQ, McGill Pain Questionnaire; NRS, Numerical Rating Scale; ns, not significant; PFPDS, Plantar Fasciopathy Pain/Disability Scale; PSFS, Patient-Specific Function Scale; QoL, Quality of Life; r, reference score; SF-36, 36-Item Short Form Health Survey; SFMPQ, Short-Form McGill Pain Questionnaire; VAS, visual analog scale.

aSignificance unknown. bHigh scores indicate better performance. cClinically relevant effect.

Table 3

Objective Study Outcomes

Author (year)InterventionOutcome variablesContact areaPressureMaximum forceWeight distributionWalking distanceGaitROMStabilityPlantar fascia thicknessSignificant between-group differences
Alghadir (2006)21(1) Dorsiflexion night splint

(2) Prefabricated insole

(3) Dorsiflexion night splint + prefabricated insole
ROM (ankle dorsiflexion) and tenderness (pressure–pain threshold)+a

a

+a
ROM: 3 > 1 & 2b
Bonanno et al (2004)54(1) Shoe

(2) Shoe + silicon heel cup

(3) Shoe + soft foam heel pad

(4) Shoe + heel lift

(5) Shoe + prefabricated insole
Contact area (contact area heel), force (maximum force heel), and pressure (peak pressure heel)r





0

+
r

+

+

0

+
r

0

0



+
Contact area: 5 > 1 & 2 & 3 & 4b

Peak pressure: 5 < 1 & 2 & 3 & 4

Force heel: 5 < 2 & 3 and 2 & 3 < 4a
Chia et al (2009)48(1) No insole

(2) Flat insole

(3) Bone spur heel pads

(4) Prefabricated foam insole

(5) Customized insole
Contact area (total contact area), force (total/rearfoot plantar force), pressure (total/rearfoot peak pressure)r

+



+

+
r

+



+

+
r

0

0

0

0
Contact area: ns

Pressure: 5 < 4 < 2 < 1 < 3a

Force: ns
Fong et al (2012)51(1) Barefoot

(2) Normal shoe + flat insole

(3) Normal shoe + customized insole

(4) Rocker shoe + flat insole

(5) Rocker shoe + customized insole
Pressure (medial/lateral heel)Single measurementPressure: 5 < d3 < 4 < d2
Kavros (2005)22(1) Prefabricated insole

(2) Aircast AirHeel
Contact area (total contact area) and force (force at midstance)+

+
0

+
Contact area: ns

Force: 2 < 1
Oliveira et al (2015)29(1) Customized total contact insole

(2) Flat insole
Contact area (surface contact static/dynamic), pressure (static/dynamic), walking distance (6MWT), and weight distribution0

0
0

0
0

0
+a

+a
Contact area: ns

Pressure: ns

Weight distribution: ns Walking distance: 1 > 2b
Park et al (2015)57(1) Low-dye taping

(2) No taping
Weight distribution (posterior/anterior weight distribution)+

+
Weight distribution: 1 > 2b
Park et al (2015)58(1) Low-dye taping

(2) No taping
Stability (TAOCOG)+

0
Stability: 1 > 2b
Sharma and Loudon (2010)38(1) Posterior AFO

(2) Stretching + plantar fascia massage
ROM (great toe)0

0
ROM: ns
Tsai et al (2010)40(1) Kinesiotaping

(2) No kinesiotaping
Plantar fascia thickness+

0
Plantar fascia thickness: 1 < 2
Van Lunen (2011)60(1) Prefabricated insole

(2) Low-dye taping
Pressure (rearfoot mean/peak plantar pressure walking)ppp:

0

0

mpp:

0

+
Pressure: 2 < 1
Walther et al (2013)44(1) Prefabricated nonsupportive insole

(2) Prefabricated soft supportive foam insole

(3) Prefabricated foam covered rigid self-supporting insole
Walking distance0

0

0
Walking distance: ns
Wheeler (2017)45(1) Posterior night splint

(2) No night splint
Plantar fascia thickness0

+
Plantar fascia thickness: ns
Wrobel et al (2015)46(3) Sham insole

(4) Customized insole

(5) Prefabricated insole
Stability (ankle/hip/COM sway), gait, and walking distance+

+

+
0

0

0
0

+

0
Walking distance: 2 > 1 & 3b

Gait: ns

Stability: ns
Yucel et al (2013)62(1) Corticosteroid injection

(2) Prefabricated insole
Plantar fascia thickness+

+
Plantar fascia thickness: 1 < 2

Abbreviations: −, negative effect; +, positive effect; 0, no effect; 6MWT, 6-minute walk test; AFO, ankle-foot orthosis; COM, center of mass; mpp, mean plantar pressure; ns, not significant; ppp, peak plantar pressure; r, reference score; ROM, range of motion; TAOCOG, transfer area of the center of gravity.

aSignificance unknown. bHigh scores indicate better performance. cClinically relevant effect. dOnly on medial heel (not lateral).

Insoles

The most studied intervention in the included articles was insoles. Comparisons were made between insole and no-insole use, between prefabricated and customized insoles, and between full-length insoles and heel cups.

Of the 25 studies21,22,2430,35,36,4144,46,4851,53,54,59,60,62 investigating the effect of insoles on plantar fasciitis, 10 studies24,26,29,30,44,46,48,49,51,54,62 included a control group wearing no insole or a sham orthosis or receiving nonmechanical interventions. Three studies29,44,51 reported significantly lower pain scores after insole use compared with the control group; one study62 found significantly lower pain scores in the control group receiving a corticosteroid injection, and 5 other studies24,26,30,46,49 found no significant differences in pain between insole and control. Improvement in function differed significant between insoles and control in 2 out of 5 studies. One study24 favored insoles over sham insoles, and another study62 favored corticosteroid injections over insoles. Biomechanical analysis has been done in 7 studies.29,44,46,48,51,54,62 Two studies29,51 found a significantly larger contact area and significantly lower plantar pressure when wearing full-length insoles compared with no insoles, but 2 others found no significant differences.

Prefabricated Versus Customized Insoles

Six studies24,30,35,43,46,48 focused on differences between prefabricated and customized insoles.

Function was assessed in 4 studies.24,35,43,46 Two studies24,35 reported an improvement after both prefabricated and customized insole use, whereas the participants in 2 other studies43,46 remained at the same function level. None of the included studies found significant differences between both types of insoles. Comparable results were found for pain. Both prefabricated and customized insoles caused a pain decrease in all 4 studies evaluating pain, but again, no significant differences were found between both groups.24,30,43,46 Significant differences between prefabricated and customized insoles were only found for walking distance, with the customized insole being more effective than the prefabricated insole.

Heel Pads Versus Full-Length Insoles

Effects of full-length insoles and heel pads were evaluated in 4 studies.27,41,48,54 One study found full-length insoles being more effective in pain reduction than heel cups,27 but in another study, no significant differences between both interventions were found for pain and function.41 Biomechanical outcomes were assessed in 2 crossover studies.48,54 Both studies found significantly lowered heel pressure when wearing a full insole, one study found a significantly larger contact during full-length insole use.54

Other Insoles

Two studies50,59 compared different types of full-length insoles. One assessed satisfaction of a homogenous and heterogeneous thermoplastic orthosis50 but did not find a significant difference. The other one compared accommodative and functional insoles.59 Improvements were seen in pain in both groups, but function and quality of life was improved only in the functional insole group. It is unclear whether differences between groups were significant.

Shoes

Shoe adaptations were evaluated in 3 studies.37,42,51 Fong et al51 performed a crossover study with a normal shoe, a rocker shoe, and a flat and customized insole. Pain scores were significantly lowered with both rocker shoe conditions and with a normal shoe combined with a customized insole. Rocker shoe combined with customized insole was best in relieving pressure followed by normal shoe combined with customized insole and rocker shoe combined with flat insole. No improvement in function was observed for flat flip-flops, prefabricated insoles and sandals having contours such as the insole, but contoured sandals were more effective in pain reduction than flat flip-flops.42

Ankle-Foot Orthoses

Three studies20,22,38 examined the effect of daytime worn AFOs on plantar fasciitis. Two compared20,38 AFOs with nonmechanical treatments. No significant differences in function were found.38 One study20 did find a significant differences in pain, with the AFO being more effective, but another study38 did not.

One study22 compared an AFO with a prefabricated insole. No significant differences in pain and contact area were found. Plantar force was significantly lowered in the AFO group.

Night Splints

Ankle-foot orthoses worn at night were evaluated in 10 articles.21,25,28,3133,36,39,45,47 Five31,33,39,45,47 studied patients with and without a night splint. Four31,33,39,45 of them assessed pain and 2 found significantly lower pain scores after night splint use.31,39 Function was improved after night splint use in 1 out of 2 studies.31 The other one33 did not find a significant difference with or without night splints. A distinction was made between anterior and posterior night splints in one study. Participants wearing the anterior night splint were more satisfied compared with posterior night splint users.32

Night Splints Versus Insoles

Four studies21,25,28,36 compared night splints with insoles. There were no significant differences in pain,21,28 function,21,36 quality of life,36 ankle dorsiflexion, and heel tenderness21 between night splint or insole use, but combining night splints and insoles did lead to improvement in pain, function,21,25 ankle dorsiflexion, and heel tenderness.21 One study reported a different result and found significantly lower pain scores after insole use compared with night splint and night splint + insole. Night splint and night splint +insole did not differ significantly.36

Taping

A total of 12 studies23,26,34,40,52,53,5558,60,61 investigated the effect of taping on plantar fasciitis. Eight studies23,26,34,53,57,58,60,61 used low-dye tape. Other taping techniques used were kinesiotaping,40,55,56 calcaneal taping,52 and Mulligan taping.55

Seven studies23,34,40,52,57,58,61 compared taping with no treatment or sham taping. Of these studies, 6 studies23,40,52,58,61,64 had pain as an outcome measure, and they all reported a significant decrease in pain in the taping group. Four studies34,40,52,58 also reported a significant pain reduction in the control group, but all favored taping over no taping or sham taping. Function did not differ significantly between taping and no taping,34,52 but taping was most effective regarding to weight distribution,57 stability,58 and plantar fascia thickness.40

Taping Versus Insoles

Three studies26,53,60 compared low-dye taping to insoles. All observed a decrease in pain in both taping and insole groups; 2 studies26,53 found a significant difference between both interventions, with the insole being more effective in reducing pain than tape. Insoles were also found to be more effective in improving function,53 whereas tape led to significantly lower mean plantar pressure.60

Discussion

The aim of this study was to systematically review the effects of insoles, AFOs, shoes, and tape as treatment for plantar fasciitis. In total, 43 studies were included, evaluating 2837 patients. Treating plantar fasciitis mechanically seems to be beneficial in relieving symptoms related to plantar fasciitis. None of the included studies reported a negative effect of mechanical treatment; all were reporting a positive or no effect.

Of all included studies, the most investigated treatment was insoles. Insoles in different shapes and materials are used to treat plantar fasciitis. Insoles covering the whole foot have a larger area of contact between the insole and the foot compared with heel cups. A larger contact area improves pressure distribution under the foot and therefore minimizes peak pressures at the insertion of the plantar fascia.48,54 Moreover, insoles having contours support the longitudinal arch, which is associated with less plantar fascia strain.65 However, despite the biomechanical differences between full-length insoles and heel cups, only one41 out of 3 studies reported a significantly larger pain decrease after full-length insole use compared with heel cups. The other 2 studies27,30 did not report significant differences between both shoe inserts. Furthermore, the effectiveness of prefabricated insoles on pain relief was compared with customized insoles. Because customized insoles are individually adapted to the anatomy of a person’s foot, we expected favorable effects of customized insoles. However, pain and function scores were comparable between prefabricated and customized insoles.24,30,35,43,46

As an alternative to insoles, shoe adaptations might be used to relieve symptoms associated with plantar fasciitis. A commonly used adaptation is a rocker-soled shoe with a stiff insole and proximal apex position. A more proximal apex position facilitates early heelrise and therefore minimizes external plantar flexion moments and plantar forefoot pressure. Lower plantar flexion moments require less pulling forces of the Achilles tendon, which leads to a smaller plantar fascia strain during gait.6669 A proximal apex position in combination with a stiff insole further minimizes plantar fascia strain by preventing excessive bending of the metatarsophalangeal joints (MTP joints).7072 In line with this proposed biomechanical effects of rocker shoes, lowered pain scores were found after the use of rocker shoes. Interestingly, prescribing rocker shoes combined with contoured insoles led to an even larger pain reduction.51 According to the authors, this was due to the pressure distributing properties of the insole. However, the contoured insoles were stiffer than the flat insoles, so the extra stiffness of the contoured insole might have an additional effect on minimizing MTP dorsiflexion leading to larger pain reductions compared with rocker shoes with flat insoles. Contoured sandals also seem to have a positive effect on pain related to plantar fasciitis. However, evidence about shoe adaptations is limited, and more research is needed to evaluate the effects of shoe sole design on plantar fasciitis.

Although rocker shoes aim to relieve pain symptoms and promote healing processes by reducing plantar fascia strain during gait, the purpose of AFOs is to increase tension on the plantar fascia during rest. During sleep, the plantar fascia is in a shortened and nonfunctional state.47 Through slight dorsiflexion at the ankle joint with an AFO, the plantar fascia remains in a lengthened state, and weight-bearing in the morning can better be tolerated by the patient.73 In addition, slight tension of the plantar fascia during sleep is hypothesized to promote plantar fascia healing.47 Although the evaluated AFOs differ in design (posterior vs anterior) and time of wearing (day vs night), all had a positive effect on pain and function. Anterior night splints were found to be more comfortable and more effective in pain reduction than posterior night splints, but evidence is weak, as only one study included both types of night splints.32 The investigated anterior AFO maintained the ankle angle at 90°, whereas the posterior AFO positioned the ankle in slight dorsiflexion. More ankle dorsiflexion increases tension on the plantar fascia through the pulling force of the Achilles tendon, possibly leading to more discomfort for the patient. AFOs seem to be as effective as insoles or stretching, but combining night splints and insoles led to enhanced improvements in pain and function compared with wearing night splints or insoles alone.

The previously mentioned treatment options were mostly prescribed for a longer period of time (>1 mo). Taping is mainly used in the short term (<1 mo) to improve biomechanics of the foot.52,64,73 Several taping techniques were used in the included studies, but all resulted in improvements in pain and function. It is unclear whether tape or insoles are more effective in reducing plantar fascia complaints. Abd El Salam and Abd Elhafz53 favored insoles over tape, whereas Lynch et al26 reported the opposite and favored tape over insoles and Van Lunen et al60 did not find significant differences between both interventions. Several reasons might be responsible for these contradictory findings. In the study of Lynch et al,26 participants received tape in the first 4 weeks of treatment and then used an insole. However, the contribution of each of the interventions to the reported decrease in pain is unclear. Van Lunen et al60 measured participants once, whereas the others had multiple follow-up sessions ranging over a few weeks.26,53 Van Lunen et al60 found significantly lowered rearfoot mean peak pressure in patients receiving tape but no significant difference in pain scores between tape and insoles. A lowered mean peak pressure might be beneficial in treating plantar fasciitis but maybe only in the long term. If so, it is not surprising that no significant differences in pain scores were visible during that single measurement.

Methodological differences such as outcome measures, follow-up time, and treatment design limit comparability between studies. Therefore, we could not conclude which treatment is most effective in relieving symptoms associated with plantar fasciitis. In addition, risk of bias was moderate to high in all included studies requiring cautious interpretation of the obtained results. Largest contributors to a high risk of bias were lack of blinding, unclear allocation concealment, and use of cointerventions. Especially, the use of cointerventions limits interpretability of the current study outcomes. For example, insoles have a beneficial effect on pain and function and their use as cointervention most likely affects overall treatment outcomes. In addition, the application of cointerventions was inconsistent and poorly reported. In some studies, additional treatment was provided to all participants, some only to a part and others did not explicitly say whether they allowed additional treatment or not. Future studies should avoid cointerventions or investigate their interaction with the primary intervention to improve interpretability of treatment outcomes.

Furthermore, we want to note that less than half of all studies used objective measures such as foot pressure to evaluate mechanical treatment effects. Mechanical treatments aim to modify biomechanical characteristics of the foot such as plantar pressure distribution in insoles or plantar fascia length in rocker shoes and AFOs. To judge the effectiveness of these mechanical treatments, their biomechanical effects should be evaluated in addition to measures of pain and foot function. For example, musculoskeletal models could be used to establish the effect of rocker shoes on plantar fascia strain during gait in patients with plantar fasciitis.72 Information on the biomechanical treatment effects can, in turn, be used to understand and improve the effectiveness of mechanical treatments.

Conclusions

Mechanical treatment seems to be beneficial in relieving symptoms related to plantar fasciitis. Methodological limitations of current studies do not allow to conclude whether any of the investigated treatments is more effective in relieving pain or improving foot function in patients with plantar fasciitis. Combining different treatment modalities such as AFOs and insoles or rocker shoes and insoles seems to enhance clinically relevant treatment effects. Future studies should aim to improve methodological quality using blinding, allocation concealment, avoid cointerventions, and use biomechanical measures of treatment effects.

Acknowledgment

This work was supported by OIM Orthopedie, Assen, The Netherlands.

References

  • 1.

    Buchbinder R. Plantar fasciitis. N Engl J Med. 2004;350(21):21592166. PubMed ID: 15152061 doi:10.1056/NEJMcp032745

  • 2.

    Lopes AD, Hespanhol LC, Yeung SS, Costa LOP. What are the main running-related musculoskeletal injuries? Sports Med. 2012;42(10):891905. PubMed ID: 22827721 doi:10.1007/BF03262301

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 2002;36(2):95101. PubMed ID: 11916889 doi:10.1136/bjsm.36.2.95

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Crawford F, Thomson CE. Interventions for treating plantar heel pain. Cochrane Database Syst Rev. 2003;3:CD000416. doi:10.1002/14651858CD000416

    • Search Google Scholar
    • Export Citation
  • 5.

    Cutts S, Obi N, Pasapula C, Chan W. Plantar fasciitis. Ann R Coll Surg Engl. 2012;94(8):539542. PubMed ID: 23131221 doi:10.1308/003588412X13171221592456

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lemont H, Ammirati KM, Usen N. Plantar fasciitis: a degenerative process (fasciosis) without inflammation. J Am Podiatr Med Assoc. 2003;93(3):234237. PubMed ID: 12756315 doi:10.7547/87507315-93-3-234

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Rano JA, Fallat LM, Savoy-Moore RT. Correlation of heel pain with body mass index and other characteristics of heel pain. J Foot Ankle Surg Off Publ Am Coll Foot Ankle Surg. 2001;40(6):351356. doi:10.1016/S1067-2516(01)80002-8

    • Search Google Scholar
    • Export Citation
  • 8.

    van Leeuwen KDB, Rogers J, Winzenberg T, van Middelkoop M. Higher body mass index is associated with plantar fasciopathy/‘plantar fasciitis’: systematic review and meta-analysis of various clinical and imaging risk factors. Br J Sports Med. 2016;50(16):972981. PubMed ID: 26644427 doi:10.1136/bjsports-2015-094695

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Riddle DL, Pulisic M, Pidcoe P, Johnson RE. Risk factors for plantar fasciitis: a matched case-control Study. J Bone Joint Surg Am. 2003;85(5):872877. PubMed ID: 12728038 doi:10.2106/00004623-200305000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kirkpatrick J, Yassaie O, Mirjalili SA. The plantar calcaneal spur: a review of anatomy, histology, etiology and key associations. J Anat. 2017;230(6):743751. PubMed ID: 28369929 doi:10.1111/joa.12607

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Martin RL, Davenport TE, Reischl SF, et al. Heel pain-plantar fasciitis: revision 2014. J Orthop Sports Phys Ther. 2014;44(11):A1A33. PubMed ID: 25361863 doi:10.2519/jospt.2014.0303

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hawke F, Burns J, Radford J, du Toit V. Custom foot orthoses for the treatment of foot pain: a systematic review. J Foot Ankle Res. 2008;1(1):O46. doi:10.1186/1757-1146-1-S1-O46

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Landorf KB. Plantar heel pain and plantar fasciitis. BMJ Clin Evid. 2015;2015:1111. PubMed ID: 26609884

  • 14.

    Lee SY, McKeon P, Hertel J. Does the use of orthoses improve self-reported pain and function measures in patients with plantar fasciitis? A meta-analysis. Phys Ther Sport. 2009;10(1):1218. PubMed ID: 19218074 doi:10.1016/j.ptsp.2008.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Podolsky R, Kalichman L. Taping for plantar fasciitis. J Back Musculoskelet Rehabil. 2015;28(1):16. PubMed ID: 24867905 doi:10.3233/BMR-140485

  • 16.

    van de Water ATM, Speksnijder CM. Efficacy of taping for the treatment of plantar fasciosis. J Am Podiatr Med Assoc. 2010;100(1):4151. PubMed ID: 20093544 doi:10.7547/1000041

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Whittaker GA, Munteanu SE, Menz HB, Tan JM, Rabusin CL, Landorf KB. Foot orthoses for plantar heel pain: a systematic review and meta-analysis. Br J Sports Med. 2018;52(5):322328. PubMed ID: 28935689 doi:10.1136/bjsports-2016-097355

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Salvioli S, Guidi M, Marcotulli G. The effectiveness of conservative, non-pharmacological treatment, of plantar heel pain: a systematic review with meta-analysis. Foot. 2017;33:5767. doi:10.1016/j.foot.2017.05.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Higgins JPT, Altman DG, Sterne JAC. Chapter 8: Assessing risk of bias in included studies. In: Higgins J, Churchill R, Chandler J, Cumpston M, eds. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.2.0. (updated June 2017), Cochrane; 2017.

    • Search Google Scholar
    • Export Citation
  • 20.

    Al-Bluwi MT, Sadat-Ali M, Al-Habdan IM, Azam MQ. Efficacy of EZStep in the management of plantar fasciitis: a prospective, randomized study. Foot Ankle Spec. 2011;4(4):218221. PubMed ID: 21868794 doi:10.1177/1938640011407318

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Alghadir AH. Conservative Treatment of Plantar Fasciitis with Dorsiflexion Night Splints and Medial Arch Supports: A Prospective Randomized Study [PhD thesis]. University of Pittsburgh; 2006.

    • Search Google Scholar
    • Export Citation
  • 22.

    Kavros SJ. The efficacy of a pneumatic compression device in the treatment of plantar fasciitis. J Appl Biomech. 2005;21(4):404413. PubMed ID: 16498185 doi:10.1123/jab.21.4.404

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Landorf KB, Radford JA, Keenan AM, Redmond AC. Effectiveness of low-dye taping for the short-term management of plantar fasciitis. J Am Podiatr Med Assoc. 2005;95(6):525530. PubMed ID: 16291843 doi:10.7547/0950525

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Landorf KB, Keenan AM, Herbert RD. Effectiveness of foot orthoses to treat plantar fasciitis: a randomized trial. Arch Intern Med. 2006;166(12):13051310. PubMed ID: 16801514 doi:10.1001/archinte.166.12.1305

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lee WC, Wong WY, Kung E, Leung AK. Effectiveness of adjustable dorsiflexion night splint in combination with accommodative foot orthosis on plantar fasciitis. J Rehabil Res Dev. 2012;49(10):15571564. PubMed ID: 23516059 doi:10.1682/JRRD.2011.09.0181

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lynch DM, Goforth WP, Martin JE, Odom RD, Preece CK, Kotter MW. Conservative treatment of plantar fasciitis. A prospective study. J Am Podiatr Med Assoc. 1998;88(8):375380. PubMed ID: 9735623 doi:10.7547/87507315-88-8-375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Malkoc M, Korkmaz O, Kara A, Oltulu I, Say F. Comparison of medial arch-supporting insoles and heel pads in the treatment of plantar fasciitis. Serbian J Exp Clin Res. 2015;16(1):3942. doi:10.1515/sjecr-2015-0006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Martin JE, Hosch JC, Goforth WP, Murff RT, Lynch DM, Odom RD. Mechanical treatment of plantar fasciitis. A prospective study. J Am Podiatr Med Assoc. 2001;91(2):5562. PubMed ID: 11266478 doi:10.7547/87507315-91-2-55

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Oliveira HAV, Jones A, Moreira E, Jennings F, Natour J. Effectiveness of total contact insoles in patients with plantar fasciitis. J Rheumatol. 2015;42(5):870878. PubMed ID: 25774062 doi:10.3899/jrheum.140429

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Pfeffer G, Bacchetti P, Deland J, et al. Comparison of custom and prefabricated orthoses in the initial treatment of proximal plantar fasciitis. Foot ankle Int. 1999;20(4):214221. PubMed ID: 10229276 doi:10.1177/107110079902000402

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Powell M, Post WR, Keener J, Wearden S. Effective treatment of chronic plantar fasciitis with dorsiflexion night splints: a crossover prospective randomized outcome study. Foot ankle Int. 1998;19(1):1018. PubMed ID: 9462907 doi:10.1177/107110079801900103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Attard J, Singh D. A comparison of two night ankle-foot orthoses used in the treatment of inferior heel pain: a preliminary investigation. Foot Ankle Surg. 2012;18(2):108110. PubMed ID: 22443996 doi:10.1016/j.fas.2011.03.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Probe RA, Baca M, Adams R, Preece C. Night splint treatment for plantar fasciitis. A prospective randomized study. Clin Orthop Relat Res. 1999;368:190195. doi:10.1097/00003086-199911000-00023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Radford JA, Landorf KB, Buchbinder R, Cook C. Effectiveness of low-dye taping for the short-term treatment of plantar heel pain: a randomised trial. BMC Musculoskelet Disord. 2006;7:64. PubMed ID: 16895612 doi:10.1186/1471-2474-7-64

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Ring K, Otter S. Clinical efficacy and cost-effectiveness of bespoke and prefabricated foot orthoses for plantar heel pain: a prospective cohort study. Musculoskeletal Care. 2014;12(1):110. PubMed ID: 23801649 doi:10.1002/msc.1053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Roos E, Engstrom M, Soderberg B. Foot orthoses for the treatment of plantar fasciitis. Foot Ankle Int. 2006;27(8):606611. PubMed ID: 16919213 doi:10.1177/107110070602700807

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ryan M, Fraser S, McDonald K, Taunton J. Examining the degree of pain reduction using a multielement exercise model with a conventional training shoe versus an ultraflexible training shoe for treating plantar fasciitis. Phys Sportsmed. 2009;37(4):6874. PubMed ID: 20048543 doi:10.3810/psm.2009.12.1744

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Sharma NK, Loudon JK. Static progressive stretch brace as a treatment of pain and functional limitations associated with plantar fasciitis: a pilot study. Foot Ankle Spec. 2010;3(3):117124. PubMed ID: 20508011 doi:10.1177/1938640010365183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Sheridan L, Lopez A, Perez A, John MM, Willis FB, Shanmugam R. Plantar fasciopathy treated with dynamic splinting: a randomized controlled trial. J Am Podiatr Med Assoc. 2010;100(3):161165. PubMed ID: 20479445 doi:10.7547/1000161

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Tsai C, Chang W, Lee J. Effects of short-term treatment with kinesiotaping for plantar fasciitis. J Musculoskelet Pain. 2010;18(1):7180. doi:10.3109/10582450903495882

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Turlik MA, Donatelli TJ, Veremis MG. A comparison of shoe inserts in relieving mechanical heel pain. Foot. 1999;9(2):8487. doi:10.1054/foot.1999.0522

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Vicenzino B, McPoil TG, Stephenson A, Paul SK. Orthosis-shaped sandals are as efficacious as in-shoe orthoses and better than flat sandals for plantar heel pain: a randomized control trial. PLoS ONE. 2015;10(12):e0142789. PubMed ID: 26669302 doi:10.1371/journal.pone.0142789

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Baldassin V, Gomes CR, Beraldo PS. Effectiveness of prefabricated and customized foot orthoses made from low-cost foam for noncomplicated plantar fasciitis: a randomized controlled trial. Arch Phys Med Rehabil. 2009;90(4):701706. PubMed ID: 19345789 doi:10.1016/j.apmr.2008.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Walther M, Kratschmer B, Verschl J, et al. Effect of different orthotic concepts as first line treatment of plantar fasciitis. Foot Ankle Surg. 2013;19(2):103107. PubMed ID: 23548451 doi:10.1016/j.fas.2012.12.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Wheeler PC. The addition of a tension night splint to a structured home rehabilitation programme in patients with chronic plantar fasciitis does not lead to significant additional benefits in either pain, function or flexibility: a single-blinded randomised controlled trial. BMJ Open Sport Exerc Med. 2017;3(1):e000234. PubMed ID: 29259809 doi:10.1136/bmjsem-2017-000234

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Wrobel JS, Fleischer AE, Crews RT, Jarrett B, Najafi B. A randomized controlled trial of custom foot orthoses for the treatment of plantar heel pain. J Am Podiatr Med Assoc. 2015;105(4):281294. PubMed ID: 25941995 doi:10.7547/13-122.1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Batt ME, Tandji JL, Skattum N. Plantar fasciitis: a prospective randomized clinical trial of the tension night splint. Clin Sports Med. 1996;6(103):158162. doi:10.1097/00042752-199607000-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Chia KK, Suresh S, Kuah A, Ong JL, Phua JM, Seah AL. Comparative trial of the foot pressure patterns between corrective orthotics, formthotics, bone spur pads and flat insoles in patients with chronic plantar fasciitis. Ann Acad Med Singapore. 2009;38(10):869875. PubMed ID: 19890578

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Dimou ES, Brantingham JW, Wood T. A randomized, controlled trial (with blinded observer) of chiropractic manipulation and Achilles stretching vs orthotics for the treatment of plantar fasciitis. J Am Chiropr Assoc. 2004;41(9):3242.

    • Search Google Scholar
    • Export Citation
  • 50.

    Ferguson H, Raskowsky M, Blake RL, Denton JA. TL-61 versus Rohadur orthoses in heel spur syndrome. J Am Podiatr Med Assoc. 1991;81(8):439442. PubMed ID: 1920106 doi:10.7547/87507315-81-8-439

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Fong DT, Pang KY, Chung MM, Hung AS, Chan K. Evaluation of combined prescription of rocker sole shoes and custom-made foot orthoses for the treatment of plantar fasciitis. Clin Biomech. 2012;27(10):10721077. doi:10.1016/j.clinbiomech.2012.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Hyland MR, Webber-Gaffney A, Cohen L, Lichtman PT. Randomized controlled trial of calcaneal taping, sham taping, and plantar fascia stretching for the short-term management of plantar heel pain. J Orthop Sports Phys Ther. 2006;36(6):364371. PubMed ID: 16776486 doi:10.2519/jospt.2006.2078

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Abd El Salam MS, Abd Elhafz YN. Low-dye taping versus medial arch support in managing pain and pain-related disability in patients with plantar fasciitis. Foot Ankle Spec. 2011;4(2):8691. PubMed ID: 21123667 doi:10.1177/1938640010387416

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Bonanno DR, Landorf KB, Menz HB. Pressure-relieving properties of various shoe inserts in older people with plantar heel pain. Gait Posture. 2011;33(3):385389. PubMed ID: 21256025 doi:10.1016/j.gaitpost.2010.12.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Mehta S, Basu S, Palekar TJ, Dave N. Effect of kinesio taping versus mulligan taping in treatment of heel pain. Int J Pharma Bio Sci. 2017;8(3):377386. doi:10.22376/ijpbs.2017.8.3.b377-386

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Ordahan B, Türkoğlu G, Karahan AY, Akkurt HE. Extracorporeal shockwave therapy versus kinesiology taping in the management of plantar fasciitis: a randomized clinical trial. Arch Rheumatol. 2017;32(3):227233. PubMed ID: 30375530 doi:10.5606/ArchRheumatol.2017.6059

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Park C, Lee S, Kim S, Hwangbo G. The effects of the application of low-dye taping on paretic side plantar pressure among patients with plantar fasciitis. J Phys Ther Sci. 2015;27(11):35553557. PubMed ID: 26696737 doi:10.1589/jpts.27.3555

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Park C, Lee S, Lim D-Y, Yi C, Kim JH, Jeon C. Effects of the application of low-dye taping on the pain and stability of patients with plantar fasciitis. J Phys Ther Sci. 2015;27(8):24912493. PubMed ID: 26355306 doi:10.1589/jpts.27.2491

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Rome K, Gray J, Stewart F, Hannant SC, Callaghan D, Hubble J. Evaluating the clinical effectiveness and cost-effectiveness of foot orthoses in the treatment of plantar heel pain: a feasibility study. J Am Podiatr Med Assoc. 2004;94(3):229238. PubMed ID: 15153583 doi:10.7547/0940229

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Van Lunen B, Cortes N, Andrus T, Walker M, Pasquale M, Onate J. Immediate effects of a heel-pain orthosis and an augmented low-dye taping on plantar pressures and pain in subjects with plantar fasciitis. Clin J Sport Med. 2011;21(6):474479. PubMed ID: 22011796 doi:10.1097/JSM.0b013e3182340199

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Van Tonder T, Allison GT, Hopper D, Grisbrook TL. Multidimensional impact of low-dye taping on low-load hopping in individuals with and without plantar fasciitis. Phys Ther Sport. 2018;29:4349. PubMed ID: 29245027 doi:10.1016/j.ptsp.2017.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Yucel U, Kucuksen S, Cingoz HT, et al. Full-length silicone insoles versus ultrasound-guided corticosteroid injection in the management of plantar fasciitis: a randomized clinical trial. Prosthet Orthot Int. 2013;37(6):471476. PubMed ID: 23471226 doi:10.1177/0309364613478328

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Landorf KB, Radford JA. Minimal important difference: values for the foot health status questionnaire, foot function index and visual analogue scale. Foot. 2008;18(1):1519. doi:10.1016/j.foot.2007.06.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Radford JA, Burns J, Buchbinder R, Landorf KB, Cook C. The effect of low-dye taping on kinematic, kinetic, and electromyographic variables: a systematic review. J Orthop Sports Phys Ther. 2006;36(4):232241. PubMed ID: 16676873 doi:10.2519/jospt.2006.36.4.232

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Kogler GF, Solomonidis SE, Paul JP. Biomechanics of longitudinal arch support mechanisms in foot orthoses and their effect on plantar aponeurosis strain. Clin Biomech. 1996;11(5):243252. doi:10.1016/0268-0033(96)00019-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Sobhani S, Zwerver J, van den Heuvel E, Postema K, Dekker R, Hijmans JM. Rocker shoes reduce Achilles tendon load in running and walking in patients with chronic Achilles tendinopathy. J Sci Med Sport. 2014;18(2):133138. PubMed ID: 24636129 doi:10.1016/j.jsams.2014.02.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Carlson RE, Fleming LL, Hutton WC. The biomechanical relationship between the tendoachilles, plantar fascia and metatarsophalangeal joint dorsiflexion angle. Foot ankle Int. 2000;21(1):1825. PubMed ID: 10710257 doi:10.1177/107110070002100104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Cheung JTM, Zhang M, An KN. Effect of Achilles tendon loading on plantar fascia tension in the standing foot. Clin Biomech. 2006;21(2):194203. doi:10.1016/j.clinbiomech.2005.09.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Erdemir A, Hamel AJ, Fauth AR, Piazza SJ, Sharkey NA. Dynamic loading of the plantar aponeurosis in walking. J Bone Joint Surg Am. 2004;86(3):546552. PubMed ID: 14996881 doi:10.2106/00004623-200403000-00013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Hutchins S, Bowker P, Geary N, Richards J. The biomechanics and clinical efficacy of footwear adapted with rocker profiles—evidence in the literature. Foot. 2009;19(3):165170. doi:10.1016/j.foot.2009.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Cheng HYK, Lin CL, Wang HW, Chou SW. Finite element analysis of plantar fascia under stretch—the relative contribution of windlass mechanism and Achilles tendon force. J Biomech. 2008;41(9):19371944. PubMed ID: 18502428 doi:10.1016/j.jbiomech.2008.03.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Lin S, Chen CPC, Tang SFT, Wong AMK, Hsieh J, Chen W. Changes in windlass effect in response to different shoe and insole designs during walking. Gait Posture. 2013;37(2):235241. PubMed ID: 22884544 doi:10.1016/j.gaitpost.2012.07.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Bolgla LA, Malone TR. Plantar fasciitis and the windlass mechanism: a biomechanical link to clinical practice. J Athl Train. 2004;39(1):7782. PubMed ID: 16558682

    • PubMed
    • Search Google Scholar
    • Export Citation

Appendix: Exact Search Terms

MEDLINEEmbaseCINAHL, lCochrane
1. “fasciitis, plantar” [MeSH Terms] OR “heel spur”[MeSH Terms]1. ’plantar fasciitis’/exp OR ’heel spur’/exp1. (MH “Plantar Fasciitis”) OR (MH “Heel Spur”)1. MeSH descriptor: [Heel Spur] explode all trees or MeSH descriptor: [Fasciitis, Plantar] explode all trees
2. “plantar fasciitis“ [Title/Abstract] OR “plantar fascitis“ [Title/Abstract] OR “plantar fasciosis“ [Title/Abstract] OR “plantar fasciopathy“ [Title/Abstract] OR “calcaneal spur*“ [Title/Abstract] OR “heel spur*“ [Title/Abstract] OR “heel pain“ [Title/Abstract] OR “plantar pain“ [Title/Abstract]2. ’plantar fasciitis’:ti,ab OR ’plantar fascitis’:ti,ab OR ’plantar fasciosis’:ti,ab OR ’plantar fasciopathy’:ti,ab OR ’calcaneal spur*’:ti,ab OR ’heel spur*’:ti,ab OR ’heel pain’:ti,ab OR ’plantar pain’2. TI (“plantar fasciitis” OR “plantar fascitis” OR “plantar fasciosis” OR “plantar fasciopathy” OR “calcaneal spur*” OR “heel spur*” OR “heel pain” OR “plantar pain”) OR AB (“plantar fasciitis” OR “plantar fascitis” OR “plantar fasciosis” OR “plantar fasciopathy” OR “calcaneal spur*” OR “heel spur*” OR “heel pain” OR “plantar pain”)2. “plantar fasciitis” or “plantar fascitis” or “plantar fasciosis” or “plantar fasciopathy” or “calcaneal spur*” or “heel spur*” or “heel pain” or “plantar pain”
3. #1 OR #23. #1 OR #23. #1 OR #23. #1 or #2
4. “orthotic devices”[MeSH Terms] OR “shoes”[MeSH Terms] OR “splints”[MeSH Terms]4. ’orthosis’/exp OR ’shoe’/exp OR ’splint’/exp4. (MH “Orthoses+”) OR (MH “Orthopedic Footwear”) OR (MH “Shoes+”) OR (MH “Splints”)4. MeSH descriptor: [Orthotic Devices] explode all trees or MeSH descriptor: [Shoes] explode all trees or MeSH descriptor: [Splints] explode all trees
5. afo*[Title/Abstract] OR “arch support*“ [Title/Abstract] OR footwear[Title/Abstract] OR “heel cup*“ [Title/Abstract] OR “heel pad*“ [Title/Abstract] OR inlay*[Title/Abstract] OR insert* [Title/Abstract] OR insole*[Title/Abstract] OR orthos*[Title/Abstract] OR orthot*[Title/Abstract] OR rocker*[Title/Abstract] OR shoe*[Title/Abstract] OR splint*[Title/Abstract] OR sole*[Title/Abstract] OR strap* [Title/Abstract] OR tape[Title/Abstract] OR taping[Title/Abstract]5. afo*:ti,ab OR ’arch support*’:ti,ab OR footwear:ti,ab OR ’heel cup*’:ti,ab OR ’heel pad*’:ti,ab OR inlay*:ti,ab OR insert:ti,ab OR insole*:ti,ab OR orthos*:ti,ab OR orthot*:ti,ab OR rocker*:ti,ab OR shoe*:ti,ab OR splint*:ti,ab OR sole*:ti,ab OR strap*:ti,ab OR tape:ti,ab OR taping:ti,ab5. TI (afo* OR “arch support*” OR footwear OR “heel cup*” OR “heel pad*” OR inlay* OR insert* OR insole* OR orthos* OR orthot* OR rocker* OR shoe* OR splint* OR sole* OR strap* OR tape OR taping) OR AB(afo* OR “arch support*” OR footwear OR “heel cup*” OR “heel pad*” OR inlay* OR insert* OR insole* OR orthos* OR orthot* OR rocker* OR shoe* OR splint* OR sole* OR strap* OR tape OR taping)5. afo* or “arch support” or “heel cup*” or “heel pad*” or footwear or inlay* or insert* or insole* or orthos* or orthot* or rocker* or shoe* or splint* or sole* or strap* or tape or taping
6. #4 OR #56. #4 OR #56. #4 OR #56. #4 or #5
7. #3 AND #67. #3 AND #67. #3 AND #67. #3 and #6

Schuitema and Greve are with the Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. Greve, Postema, Dekker, and Hijmans are with the Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. Postema is also with the Roessingh Center for Rehabilitation, Enschede, The Netherlands. Dekker is also with the Center for Sports Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Greve (c.greve@umcg.nl) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Buchbinder R. Plantar fasciitis. N Engl J Med. 2004;350(21):21592166. PubMed ID: 15152061 doi:10.1056/NEJMcp032745

  • 2.

    Lopes AD, Hespanhol LC, Yeung SS, Costa LOP. What are the main running-related musculoskeletal injuries? Sports Med. 2012;42(10):891905. PubMed ID: 22827721 doi:10.1007/BF03262301

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 2002;36(2):95101. PubMed ID: 11916889 doi:10.1136/bjsm.36.2.95

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Crawford F, Thomson CE. Interventions for treating plantar heel pain. Cochrane Database Syst Rev. 2003;3:CD000416. doi:10.1002/14651858CD000416

    • Search Google Scholar
    • Export Citation
  • 5.

    Cutts S, Obi N, Pasapula C, Chan W. Plantar fasciitis. Ann R Coll Surg Engl. 2012;94(8):539542. PubMed ID: 23131221 doi:10.1308/003588412X13171221592456

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lemont H, Ammirati KM, Usen N. Plantar fasciitis: a degenerative process (fasciosis) without inflammation. J Am Podiatr Med Assoc. 2003;93(3):234237. PubMed ID: 12756315 doi:10.7547/87507315-93-3-234

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Rano JA, Fallat LM, Savoy-Moore RT. Correlation of heel pain with body mass index and other characteristics of heel pain. J Foot Ankle Surg Off Publ Am Coll Foot Ankle Surg. 2001;40(6):351356. doi:10.1016/S1067-2516(01)80002-8

    • Search Google Scholar
    • Export Citation
  • 8.

    van Leeuwen KDB, Rogers J, Winzenberg T, van Middelkoop M. Higher body mass index is associated with plantar fasciopathy/‘plantar fasciitis’: systematic review and meta-analysis of various clinical and imaging risk factors. Br J Sports Med. 2016;50(16):972981. PubMed ID: 26644427 doi:10.1136/bjsports-2015-094695

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Riddle DL, Pulisic M, Pidcoe P, Johnson RE. Risk factors for plantar fasciitis: a matched case-control Study. J Bone Joint Surg Am. 2003;85(5):872877. PubMed ID: 12728038 doi:10.2106/00004623-200305000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kirkpatrick J, Yassaie O, Mirjalili SA. The plantar calcaneal spur: a review of anatomy, histology, etiology and key associations. J Anat. 2017;230(6):743751. PubMed ID: 28369929 doi:10.1111/joa.12607

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Martin RL, Davenport TE, Reischl SF, et al. Heel pain-plantar fasciitis: revision 2014. J Orthop Sports Phys Ther. 2014;44(11):A1A33. PubMed ID: 25361863 doi:10.2519/jospt.2014.0303

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hawke F, Burns J, Radford J, du Toit V. Custom foot orthoses for the treatment of foot pain: a systematic review. J Foot Ankle Res. 2008;1(1):O46. doi:10.1186/1757-1146-1-S1-O46

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Landorf KB. Plantar heel pain and plantar fasciitis. BMJ Clin Evid. 2015;2015:1111. PubMed ID: 26609884

  • 14.

    Lee SY, McKeon P, Hertel J. Does the use of orthoses improve self-reported pain and function measures in patients with plantar fasciitis? A meta-analysis. Phys Ther Sport. 2009;10(1):1218. PubMed ID: 19218074 doi:10.1016/j.ptsp.2008.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Podolsky R, Kalichman L. Taping for plantar fasciitis. J Back Musculoskelet Rehabil. 2015;28(1):16. PubMed ID: 24867905 doi:10.3233/BMR-140485

  • 16.

    van de Water ATM, Speksnijder CM. Efficacy of taping for the treatment of plantar fasciosis. J Am Podiatr Med Assoc. 2010;100(1):4151. PubMed ID: 20093544 doi:10.7547/1000041

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Whittaker GA, Munteanu SE, Menz HB, Tan JM, Rabusin CL, Landorf KB. Foot orthoses for plantar heel pain: a systematic review and meta-analysis. Br J Sports Med. 2018;52(5):322328. PubMed ID: 28935689 doi:10.1136/bjsports-2016-097355

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Salvioli S, Guidi M, Marcotulli G. The effectiveness of conservative, non-pharmacological treatment, of plantar heel pain: a systematic review with meta-analysis. Foot. 2017;33:5767. doi:10.1016/j.foot.2017.05.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Higgins JPT, Altman DG, Sterne JAC. Chapter 8: Assessing risk of bias in included studies. In: Higgins J, Churchill R, Chandler J, Cumpston M, eds. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.2.0. (updated June 2017), Cochrane; 2017.

    • Search Google Scholar
    • Export Citation
  • 20.

    Al-Bluwi MT, Sadat-Ali M, Al-Habdan IM, Azam MQ. Efficacy of EZStep in the management of plantar fasciitis: a prospective, randomized study. Foot Ankle Spec. 2011;4(4):218221. PubMed ID: 21868794 doi:10.1177/1938640011407318

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Alghadir AH. Conservative Treatment of Plantar Fasciitis with Dorsiflexion Night Splints and Medial Arch Supports: A Prospective Randomized Study [PhD thesis]. University of Pittsburgh; 2006.

    • Search Google Scholar
    • Export Citation
  • 22.

    Kavros SJ. The efficacy of a pneumatic compression device in the treatment of plantar fasciitis. J Appl Biomech. 2005;21(4):404413. PubMed ID: 16498185 doi:10.1123/jab.21.4.404

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Landorf KB, Radford JA, Keenan AM, Redmond AC. Effectiveness of low-dye taping for the short-term management of plantar fasciitis. J Am Podiatr Med Assoc. 2005;95(6):525530. PubMed ID: 16291843 doi:10.7547/0950525

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Landorf KB, Keenan AM, Herbert RD. Effectiveness of foot orthoses to treat plantar fasciitis: a randomized trial. Arch Intern Med. 2006;166(12):13051310. PubMed ID: 16801514 doi:10.1001/archinte.166.12.1305

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lee WC, Wong WY, Kung E, Leung AK. Effectiveness of adjustable dorsiflexion night splint in combination with accommodative foot orthosis on plantar fasciitis. J Rehabil Res Dev. 2012;49(10):15571564. PubMed ID: 23516059 doi:10.1682/JRRD.2011.09.0181

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lynch DM, Goforth WP, Martin JE, Odom RD, Preece CK, Kotter MW. Conservative treatment of plantar fasciitis. A prospective study. J Am Podiatr Med Assoc. 1998;88(8):375380. PubMed ID: 9735623 doi:10.7547/87507315-88-8-375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Malkoc M, Korkmaz O, Kara A, Oltulu I, Say F. Comparison of medial arch-supporting insoles and heel pads in the treatment of plantar fasciitis. Serbian J Exp Clin Res. 2015;16(1):3942. doi:10.1515/sjecr-2015-0006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Martin JE, Hosch JC, Goforth WP, Murff RT, Lynch DM, Odom RD. Mechanical treatment of plantar fasciitis. A prospective study. J Am Podiatr Med Assoc. 2001;91(2):5562. PubMed ID: 11266478 doi:10.7547/87507315-91-2-55

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Oliveira HAV, Jones A, Moreira E, Jennings F, Natour J. Effectiveness of total contact insoles in patients with plantar fasciitis. J Rheumatol. 2015;42(5):870878. PubMed ID: 25774062 doi:10.3899/jrheum.140429

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Pfeffer G, Bacchetti P, Deland J, et al. Comparison of custom and prefabricated orthoses in the initial treatment of proximal plantar fasciitis. Foot ankle Int. 1999;20(4):214221. PubMed ID: 10229276 doi:10.1177/107110079902000402

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Powell M, Post WR, Keener J, Wearden S. Effective treatment of chronic plantar fasciitis with dorsiflexion night splints: a crossover prospective randomized outcome study. Foot ankle Int. 1998;19(1):1018. PubMed ID: 9462907 doi:10.1177/107110079801900103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Attard J, Singh D. A comparison of two night ankle-foot orthoses used in the treatment of inferior heel pain: a preliminary investigation. Foot Ankle Surg. 2012;18(2):108110. PubMed ID: 22443996 doi:10.1016/j.fas.2011.03.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Probe RA, Baca M, Adams R, Preece C. Night splint treatment for plantar fasciitis. A prospective randomized study. Clin Orthop Relat Res. 1999;368:190195. doi:10.1097/00003086-199911000-00023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Radford JA, Landorf KB, Buchbinder R, Cook C. Effectiveness of low-dye taping for the short-term treatment of plantar heel pain: a randomised trial. BMC Musculoskelet Disord. 2006;7:64. PubMed ID: 16895612 doi:10.1186/1471-2474-7-64

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Ring K, Otter S. Clinical efficacy and cost-effectiveness of bespoke and prefabricated foot orthoses for plantar heel pain: a prospective cohort study. Musculoskeletal Care. 2014;12(1):110. PubMed ID: 23801649 doi:10.1002/msc.1053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Roos E, Engstrom M, Soderberg B. Foot orthoses for the treatment of plantar fasciitis. Foot Ankle Int. 2006;27(8):606611. PubMed ID: 16919213 doi:10.1177/107110070602700807

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ryan M, Fraser S, McDonald K, Taunton J. Examining the degree of pain reduction using a multielement exercise model with a conventional training shoe versus an ultraflexible training shoe for treating plantar fasciitis. Phys Sportsmed. 2009;37(4):6874. PubMed ID: 20048543 doi:10.3810/psm.2009.12.1744

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Sharma NK, Loudon JK. Static progressive stretch brace as a treatment of pain and functional limitations associated with plantar fasciitis: a pilot study. Foot Ankle Spec. 2010;3(3):117124. PubMed ID: 20508011 doi:10.1177/1938640010365183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Sheridan L, Lopez A, Perez A, John MM, Willis FB, Shanmugam R. Plantar fasciopathy treated with dynamic splinting: a randomized controlled trial. J Am Podiatr Med Assoc. 2010;100(3):161165. PubMed ID: 20479445 doi:10.7547/1000161

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Tsai C, Chang W, Lee J. Effects of short-term treatment with kinesiotaping for plantar fasciitis. J Musculoskelet Pain. 2010;18(1):7180. doi:10.3109/10582450903495882

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Turlik MA, Donatelli TJ, Veremis MG. A comparison of shoe inserts in relieving mechanical heel pain. Foot. 1999;9(2):8487. doi:10.1054/foot.1999.0522

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Vicenzino B, McPoil TG, Stephenson A, Paul SK. Orthosis-shaped sandals are as efficacious as in-shoe orthoses and better than flat sandals for plantar heel pain: a randomized control trial. PLoS ONE. 2015;10(12):e0142789. PubMed ID: 26669302 doi:10.1371/journal.pone.0142789

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Baldassin V, Gomes CR, Beraldo PS. Effectiveness of prefabricated and customized foot orthoses made from low-cost foam for noncomplicated plantar fasciitis: a randomized controlled trial. Arch Phys Med Rehabil. 2009;90(4):701706. PubMed ID: 19345789 doi:10.1016/j.apmr.2008.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Walther M, Kratschmer B, Verschl J, et al. Effect of different orthotic concepts as first line treatment of plantar fasciitis. Foot Ankle Surg. 2013;19(2):103107. PubMed ID: 23548451 doi:10.1016/j.fas.2012.12.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Wheeler PC. The addition of a tension night splint to a structured home rehabilitation programme in patients with chronic plantar fasciitis does not lead to significant additional benefits in either pain, function or flexibility: a single-blinded randomised controlled trial. BMJ Open Sport Exerc Med. 2017;3(1):e000234. PubMed ID: 29259809 doi:10.1136/bmjsem-2017-000234

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Wrobel JS, Fleischer AE, Crews RT, Jarrett B, Najafi B. A randomized controlled trial of custom foot orthoses for the treatment of plantar heel pain. J Am Podiatr Med Assoc. 2015;105(4):281294. PubMed ID: 25941995 doi:10.7547/13-122.1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Batt ME, Tandji JL, Skattum N. Plantar fasciitis: a prospective randomized clinical trial of the tension night splint. Clin Sports Med. 1996;6(103):158162. doi:10.1097/00042752-199607000-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Chia KK, Suresh S, Kuah A, Ong JL, Phua JM, Seah AL. Comparative trial of the foot pressure patterns between corrective orthotics, formthotics, bone spur pads and flat insoles in patients with chronic plantar fasciitis. Ann Acad Med Singapore. 2009;38(10):869875. PubMed ID: 19890578

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Dimou ES, Brantingham JW, Wood T. A randomized, controlled trial (with blinded observer) of chiropractic manipulation and Achilles stretching vs orthotics for the treatment of plantar fasciitis. J Am Chiropr Assoc. 2004;41(9):3242.

    • Search Google Scholar
    • Export Citation
  • 50.

    Ferguson H, Raskowsky M, Blake RL, Denton JA. TL-61 versus Rohadur orthoses in heel spur syndrome. J Am Podiatr Med Assoc. 1991;81(8):439442. PubMed ID: 1920106 doi:10.7547/87507315-81-8-439

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Fong DT, Pang KY, Chung MM, Hung AS, Chan K. Evaluation of combined prescription of rocker sole shoes and custom-made foot orthoses for the treatment of plantar fasciitis. Clin Biomech. 2012;27(10):10721077. doi:10.1016/j.clinbiomech.2012.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Hyland MR, Webber-Gaffney A, Cohen L, Lichtman PT. Randomized controlled trial of calcaneal taping, sham taping, and plantar fascia stretching for the short-term management of plantar heel pain. J Orthop Sports Phys Ther. 2006;36(6):364371. PubMed ID: 16776486 doi:10.2519/jospt.2006.2078

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Abd El Salam MS, Abd Elhafz YN. Low-dye taping versus medial arch support in managing pain and pain-related disability in patients with plantar fasciitis. Foot Ankle Spec. 2011;4(2):8691. PubMed ID: 21123667 doi:10.1177/1938640010387416

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Bonanno DR, Landorf KB, Menz HB. Pressure-relieving properties of various shoe inserts in older people with plantar heel pain. Gait Posture. 2011;33(3):385389. PubMed ID: 21256025 doi:10.1016/j.gaitpost.2010.12.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Mehta S, Basu S, Palekar TJ, Dave N. Effect of kinesio taping versus mulligan taping in treatment of heel pain. Int J Pharma Bio Sci. 2017;8(3):377386. doi:10.22376/ijpbs.2017.8.3.b377-386

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Ordahan B, Türkoğlu G, Karahan AY, Akkurt HE. Extracorporeal shockwave therapy versus kinesiology taping in the management of plantar fasciitis: a randomized clinical trial. Arch Rheumatol. 2017;32(3):227233. PubMed ID: 30375530 doi:10.5606/ArchRheumatol.2017.6059

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Park C, Lee S, Kim S, Hwangbo G. The effects of the application of low-dye taping on paretic side plantar pressure among patients with plantar fasciitis. J Phys Ther Sci. 2015;27(11):35553557. PubMed ID: 26696737 doi:10.1589/jpts.27.3555

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Park C, Lee S, Lim D-Y, Yi C, Kim JH, Jeon C. Effects of the application of low-dye taping on the pain and stability of patients with plantar fasciitis. J Phys Ther Sci. 2015;27(8):24912493. PubMed ID: 26355306 doi:10.1589/jpts.27.2491

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Rome K, Gray J, Stewart F, Hannant SC, Callaghan D, Hubble J. Evaluating the clinical effectiveness and cost-effectiveness of foot orthoses in the treatment of plantar heel pain: a feasibility study. J Am Podiatr Med Assoc. 2004;94(3):229238. PubMed ID: 15153583 doi:10.7547/0940229

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Van Lunen B, Cortes N, Andrus T, Walker M, Pasquale M, Onate J. Immediate effects of a heel-pain orthosis and an augmented low-dye taping on plantar pressures and pain in subjects with plantar fasciitis. Clin J Sport Med. 2011;21(6):474479. PubMed ID: 22011796 doi:10.1097/JSM.0b013e3182340199

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Van Tonder T, Allison GT, Hopper D, Grisbrook TL. Multidimensional impact of low-dye taping on low-load hopping in individuals with and without plantar fasciitis. Phys Ther Sport. 2018;29:4349. PubMed ID: 29245027 doi:10.1016/j.ptsp.2017.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Yucel U, Kucuksen S, Cingoz HT, et al. Full-length silicone insoles versus ultrasound-guided corticosteroid injection in the management of plantar fasciitis: a randomized clinical trial. Prosthet Orthot Int. 2013;37(6):471476. PubMed ID: 23471226 doi:10.1177/0309364613478328

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Landorf KB, Radford JA. Minimal important difference: values for the foot health status questionnaire, foot function index and visual analogue scale. Foot. 2008;18(1):1519. doi:10.1016/j.foot.2007.06.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Radford JA, Burns J, Buchbinder R, Landorf KB, Cook C. The effect of low-dye taping on kinematic, kinetic, and electromyographic variables: a systematic review. J Orthop Sports Phys Ther. 2006;36(4):232241. PubMed ID: 16676873 doi:10.2519/jospt.2006.36.4.232

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Kogler GF, Solomonidis SE, Paul JP. Biomechanics of longitudinal arch support mechanisms in foot orthoses and their effect on plantar aponeurosis strain. Clin Biomech. 1996;11(5):243252. doi:10.1016/0268-0033(96)00019-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Sobhani S, Zwerver J, van den Heuvel E, Postema K, Dekker R, Hijmans JM. Rocker shoes reduce Achilles tendon load in running and walking in patients with chronic Achilles tendinopathy. J Sci Med Sport. 2014;18(2):133138. PubMed ID: 24636129 doi:10.1016/j.jsams.2014.02.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Carlson RE, Fleming LL, Hutton WC. The biomechanical relationship between the tendoachilles, plantar fascia and metatarsophalangeal joint dorsiflexion angle. Foot ankle Int. 2000;21(1):1825. PubMed ID: 10710257 doi:10.1177/107110070002100104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Cheung JTM, Zhang M, An KN. Effect of Achilles tendon loading on plantar fascia tension in the standing foot. Clin Biomech. 2006;21(2):194203. doi:10.1016/j.clinbiomech.2005.09.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Erdemir A, Hamel AJ, Fauth AR, Piazza SJ, Sharkey NA. Dynamic loading of the plantar aponeurosis in walking. J Bone Joint Surg Am. 2004;86(3):546552. PubMed ID: 14996881 doi:10.2106/00004623-200403000-00013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Hutchins S, Bowker P, Geary N, Richards J. The biomechanics and clinical efficacy of footwear adapted with rocker profiles—evidence in the literature. Foot. 2009;19(3):165170. doi:10.1016/j.foot.2009.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Cheng HYK, Lin CL, Wang HW, Chou SW. Finite element analysis of plantar fascia under stretch—the relative contribution of windlass mechanism and Achilles tendon force. J Biomech. 2008;41(9):19371944. PubMed ID: 18502428 doi:10.1016/j.jbiomech.2008.03.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Lin S, Chen CPC, Tang SFT, Wong AMK, Hsieh J, Chen W. Changes in windlass effect in response to different shoe and insole designs during walking. Gait Posture. 2013;37(2):235241. PubMed ID: 22884544 doi:10.1016/j.gaitpost.2012.07.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Bolgla LA, Malone TR. Plantar fasciitis and the windlass mechanism: a biomechanical link to clinical practice. J Athl Train. 2004;39(1):7782. PubMed ID: 16558682

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 27561 6505 707
PDF Downloads 21641 5306 579