Acute Effects of Tissue Flossing on Ankle Range of Motion and Tensiomyography Parameters

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Recently, a few papers have suggested that tissue flossing (TF) acutely improves range of motion (ROM) and neuromuscular performance. However, the effects of TF on muscle contractile properties are yet to be defined. Objective: To investigate the acute effects of TF on ankle ROM and associated muscle gastrocnemius medialis displacement and contraction time assessed with tensiomyography. Design: Crossover design in a single session. Setting: University laboratory. Participants: Thirty recreationally trained volunteers (age 23.00 [4.51] y). Intervention: Active ankle plantar flexion and dorsiflexion were performed for the duration of 2 minutes (3 sets, 2-min rest between sets), while a randomly selected ankle was wrapped using TF elastic band (BAND) and the other ankle served as a control condition (CON). Main Outcome Measures: Participants performed an active ankle plantar flexion and dorsiflexion ROM test and muscle gastrocnemius medialis tensiomyography displacement and contraction time measurement pre, 5, 15, 30, and 45 minutes after the floss band application. Results: There were no statistically significant differences between BAND and CON conditions (active ankle plantar flexion ROM: P = .09; active ankle dorsiflexion ROM: P = .85); however, all ROM measurements were associated with medium or large effect sizes in favor of BAND compared with CON. No significant changes were observed in the tensiomyography parameters. Conclusions: The results of this study suggest that TF applied to the ankle is a valid method to increase ROM and at the same time maintaining muscular stiffness.

Vogrin, Novak, Licen, Greiner, Mikl, and Kalc are with the Faculty of Medicine, Institute of Sports Medicine, University of Maribor, Maribor, Slovenia. Vogrin is also with the Department of Orthopaedics, University Medical Center Maribor, Maribor, Slovenia.

Kalc (milos.kalc@ism-mb.si) is corresponding author.
  • 1.

    Starrett K, Cordoza G. Becoming a Supple Leopard: The Ultimate Guide to Resolving Pain, Preventing Injury, and Optimizing Athletic Performance. Las Vegas, NV: Victory Belt Publishing; 2016.

    • Search Google Scholar
    • Export Citation
  • 2.

    Driller MW, Overmayer RG. The effects of tissue flossing on ankle range of motion and jump performance. Phys Ther Sport. 2017;25:2024. PubMed ID: 28254581 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Driller MW, Mackay K, Mills B, Tavares F. Tissue flossing on ankle range of motion, jump and sprint performance: a follow-up study. Phys Ther Sport. 2017;28:2933. PubMed ID: 28950149 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Gorny V, Stöggl T. Tissue flossing as a recovery tool for the lower extremity after strength endurance intervals. Sportverletz Sportschaden. 2018;32(1):5560. PubMed ID: 29401529 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Prill R, Schulz R, Michel S. Tissue flossing: a new short-term compression therapy for reducing exercise-induced delayed-onset muscle soreness. A randomized, controlled and double-blind pilot crossover trial. J Sports Med Phys Fitness. 2019;59(5):861867. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mills B, Mayo B, Tavares F, Driller M. The effect of tissue flossing on ankle range of motion, jump, and sprint performance in elite rugby union athletes. J Sport Rehabil. 2019;29(3):283286. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Kay AD, Blazevich AJ. Effect of acute static stretch on maximal muscle performance: a systematic review. Med Sci Sports Exerc. 2012;44(1):154164. PubMed ID: 21659901 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Loenneke JP, Abe T, Wilson JM, Ugrinowitsch C, Bemben MG. Blood flow restriction: how does it work? Front Physiol. 2012;3:392. PubMed ID: 23060816 doi:

  • 9.

    Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. Blood flow restricted exercise for athletes: a review of available evidence. J Sci Med Sport. 2016;19(5):360367. PubMed ID: 26118847 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    McKenney K, Elder AS, Elder C, Hutchins A. Myofascial release as a treatment for orthopaedic conditions: a systematic review. J Athl Train. 2013;48(4):522527. PubMed ID: 23725488 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Beardsley C, Škarabot J. Effects of self-myofascial release: a systematic review. J Bodyw Mov Ther. 2015;19(4):747758. PubMed ID: 26592233 doi:

  • 12.

    Schleip R, Müller DG. Training principles for fascial connective tissues: scientific foundation and suggested practical applications. J Bodyw Mov Ther. 2013;17(1):103115. PubMed ID: 23294691 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Findley T, Chaudhry H, Stecco A, Roman M. Fascia research—a narrative review. J Bodyw Mov Ther. 2012;16(1):6775. PubMed ID: 22196430 doi:

  • 14.

    Schleip R. Fascial plasticity—a new neurobiological explanation: part 1. J Bodyw Mov Ther. 2003;7(1):1119. doi:

  • 15.

    Young JD, Spence A-J, Behm DG. Roller massage decreases spinal excitability to the soleus. J Appl Physiol. 2018;124(4):950959. PubMed ID: 29357488 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ditroilo M, Smith IJ, Fairweather MM, Hunter AM. Long-term stability of tensiomyography measured under different muscle conditions. J Electromyogr Kinesiol. 2013;23(3):558563. PubMed ID: 23461833 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Zubac D, Šimunic B. Skeletal muscle contraction time and tone decrease after 8 weeks of plyometric training. J Strength Cond Res. 2017;31(6):16101619. PubMed ID: 28538312 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Šimunič B, Degens H, Rittweger J, Narici M, Mekjavić IB, Pišot R. Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Med Sci Sports Exerc. 2011;43(9):16191625. PubMed ID: 21552151 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Pišot R, Narici MV, Šimunič B, et al. Whole muscle contractile parameters and thickness loss during 35-day bed rest. Eur J Appl Physiol. 2008;104(2):409414. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Macgregor LJ, Fairweather MM, Bennett RM, Hunter AM. The effect of foam rolling for three consecutive days on muscular efficiency and range of motion. Sports Med Open. 2018;4(1):26. PubMed ID: 29884972 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Murray AM, Jones TW, Horobeanu C, et al. Sixty seconds of foam rolling does not affect functional flexibility or change muscle temperature in adolescent athletes. Int J Sports Phys Ther. 2016;11(5):765776. PubMed ID: 27757289

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Martínez-Cabrera FI, Núñez-Sánchez FJ. Acute effect of a foam roller on the mechanical properties of the rectus femoris based on tensiomyography in soccer players. Int J Hum Mov Sports Sci. 2016;4(2):2632. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Youdas JW, Bogard CL, Suman VJ. Reliability of goniometric measurements and visual estimates of ankle joint active range of motion obtained in a clinical setting. Arch Phys Med Rehabil. 1993;74(10):11131118. PubMed ID: 8215866 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Tous-Fajardo J, Moras G, Rodríguez-Jiménez S, Usach R, Doutres DM, Maffiuletti NA. Inter-rater reliability of muscle contractile property measurements using non-invasive tensiomyography. J Electromyogr Kinesiol. 2010;20(4):761766. PubMed ID: 20236839 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Šimunič B. Between-day reliability of a method for non-invasive estimation of muscle composition. J Electromyogr Kinesiol. 2012;22(4):527530. PubMed ID: 22546361 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2018. https://www.R-project.org/

    • Search Google Scholar
    • Export Citation
  • 27.

    Singmann H, Bolker B, Westfall J, et al. Afex: Analysis of Factorial Experiments. 2018. https://CRAN.R-project.org/package=afex

  • 28.

    Lenth R, Singmann H, Love J, Buerkner P, Herve M. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. 2018. https://CRAN.R-project.org/package=emmeans

    • Search Google Scholar
    • Export Citation
  • 29.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 30.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed ID: 19114737 doi:

  • 31.

    Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol. 2000;88(6):20972106. PubMed ID: 10846023 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Reeves GV, Kraemer RR, Hollander DB, et al. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. J Appl Physiol. 2006;101(6):16161622. PubMed ID: 16902061 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Macgregor LJ, Ditroilo M, Smith IJ, Fairweather MM, Hunter AM. Reduced radial displacement of the gastrocnemius medialis muscle after electrically elicited fatigue. J Sport Rehabil. 2016;25(3):241247. PubMed ID: 26060988 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179194. PubMed ID: 23338987 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Kayser B, Bökenkamp R, Binzoni T. Alpha-motoneuron excitability at high altitude. Eur J Appl Physiol. 1993;66(1):14. doi:

  • 36.

    Rupp T, Racinais S, Bringard A, Lapole T, Perrey S. Modulation of exercise-induced spinal loop properties in response to oxygen availability. Eur J Appl Physiol. 2014;115(3):471482. PubMed ID: 25361617 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Morales-Artacho AJ, Padial P, Rodríguez-Matoso D, et al. Assessment of muscle contractile properties at acute moderate altitude through tensiomyography. High Alt Med Biol. 2015;16(4):343349. PubMed ID: 26562625 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 988 988 565
Full Text Views 12 12 9
PDF Downloads 10 10 8